Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_8_a7, author = {A. P. Sokolov and V. N. Shchetinin and M. Yu. Kozlov}, title = {Modeling elastic properties of composites using asymptotic averaging method with imperfect interface}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {119--138}, publisher = {mathdoc}, volume = {32}, number = {8}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_8_a7/} }
TY - JOUR AU - A. P. Sokolov AU - V. N. Shchetinin AU - M. Yu. Kozlov TI - Modeling elastic properties of composites using asymptotic averaging method with imperfect interface JO - Matematičeskoe modelirovanie PY - 2020 SP - 119 EP - 138 VL - 32 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_8_a7/ LA - ru ID - MM_2020_32_8_a7 ER -
%0 Journal Article %A A. P. Sokolov %A V. N. Shchetinin %A M. Yu. Kozlov %T Modeling elastic properties of composites using asymptotic averaging method with imperfect interface %J Matematičeskoe modelirovanie %D 2020 %P 119-138 %V 32 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_8_a7/ %G ru %F MM_2020_32_8_a7
A. P. Sokolov; V. N. Shchetinin; M. Yu. Kozlov. Modeling elastic properties of composites using asymptotic averaging method with imperfect interface. Matematičeskoe modelirovanie, Tome 32 (2020) no. 8, pp. 119-138. http://geodesic.mathdoc.fr/item/MM_2020_32_8_a7/
[1] J. D. Achenbach, H. Zhu, “Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites”, J. of the Mech. and Phys. of Sol., 37:3 (1989), 81–393 | DOI | MR
[2] V. E. Zgaevskij, IU. G. IAnovskij, “Mekhanicheskie kharakteristiki sloia makromolekul vblizi poverkhnosti napolnitelia”, Mekh. kompozits. mater. i konstruk., 3:1 (1997), 105–112
[3] P. G. Khalatur, “Computer simulation of thin polymer layers”, Makromol. Chem., Macromol. Symp., 44:1 (1991), 23–32 | DOI
[4] N. K. Balabaev, A. N. Vlasov, V. E. Zgaevskij, IU. N. Karnet, IU. G. IAnovskij, “Struktura i mikromekhanicheskie svojstva mezhfaznykh sloev polimernykh matrichnykh kompozitov”, Mekhanika kompozitsionnykh materialov i konstruktsij, 5:2 (1999), 109–123
[5] R. M. Christensen, K. H. Lo, “Solutions for effective shear properties in three phase sphere and cylinder models”, J. of the Mechanics and Physics of Solids, 27:4 (1979), 315–330 | DOI | Zbl
[6] Yozo Mikata, Minoru Taya, “Stress field in a coated continuous fiber composite subjected to thermomechanical loadings”, J. Compos. Mater., 19:6, November (1985), 554–578 | DOI
[7] Y. Benveniste, G. J. Dvorak, T. Chen, “Stress fields in composites with coated inclusions”, Mechanics of Materials, 7:4 (1989), 305–317 | DOI
[8] N. J. Pagano, G. P. Tandon, “Elastic response of multi-directional coated-fiber composites”, Composites Science and Technology, 31:4 (1988), 273–293 | DOI
[9] I. Sevostianov, R. Rodriguez-Ramos, R. Guinovart-Diaz, J. Bravo-Castillero, F. J. Sabina, “Connections between different models describing imperfect interfaces in periodic fiber-reinforced composites”, Intern. J. of Solids and Structures, 49:13 (2012), 1518–1525 | DOI
[10] M. Goland, E. Reissner, “The stresses in cemented joints”, J. Appl. Mech., 66 (1944), A17–A27
[11] Y. Benveniste, “The effective mechanical behaviour of composite materials with imperfect contact between the constituents”, Mechanics of Materials, 4:2 (1985), 197–208 | DOI
[12] Z. Hashin, “Thermoelastic properties of fiber composites with imperfect interface”, Mechanics of Materials, 8:4 (1990), 333–348 | DOI | MR
[13] Z. Hashin, “The spherical inclusion with imperfect interface”, J. of Applied Mechanics, 58:2 (1991), 444–449 | DOI
[14] Z. Hashin, “Thermoelastic properties of particulate composites with imperfect interface”, Journal of the Mechanics and Physics of Solids, 39:6 (1991), 745–762 | DOI | MR
[15] Z. Hashin, “Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli”, J. of the Mechanics and Physics of Solids, 40:4 (1992), 767–781 | DOI | MR | Zbl
[16] Z. Hashin, “Thin interphase/imperfect interface in elasticity with application to coated fiber composites”, J. of the Mechanics and Physics of Solids, 50:12 (2002), 2509–2537 | DOI | MR | Zbl
[17] P. Bövik, “On the modelling of thin interface layers in elastic and acoustic scattering problems”, Quarterly J. of Mechanics and Appl. Math., 47:1, February (1994), 17–42 | DOI | MR | Zbl
[18] Y. Benveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mechanics of Materials, 33:6 (2001), 309–323 | DOI
[19] D. Caillerie, J. C. Nedelec, “The effect of a thin inclusion of high rigidity in an elastic body”, Mathematical Methods in the Applied Sciences, 2:3 (1980), 251–270 | DOI | MR | Zbl
[20] Y. Benveniste, “A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media”, J. of the Mechanics and Physics of Solids, 54:4 (2006), 708–734 | DOI | MR | Zbl
[21] A. Klarbring, “Derivation of a model of adhesively bonded joints by the asymptotic expansion method”, Intern. J. of Engineering Science, 29:4 (1991), 493–512 | DOI | MR | Zbl
[22] A. Klarbring. A.B. Movchan, “Asymptotic modelling of adhesive joints”, Mechanics of Materials, 28:1–4 (1998), 137–145 | DOI
[23] G. Geymonat, F. Krasucki, S. Lenci, “Mathematical analysis of a bonded joint with a soft thin adhesive”, Mathematics and Mechanics of Solids, 4:2 (1999), 201–225 | DOI | MR
[24] F. Lebon, R. Rizzoni, S. Ronel, C. Licht, “Analysis of non-linear soft thin interfaces”, The Sixth Intern. Conf. on Comp. Structures Technology (September, 2002), 155–156
[25] F. Lebon, S. Ronel, “Asymptotic analysis of Mohr–Coulomb and Drucker–Prager soft thin layers”, Steel and Composite Structures, Techno-press, 4 (2004), 133–147 | DOI
[26] F. Lebon, R. Rizzoni, “Asymptotic behavior of a hard thin linear elastic interphase: an energy approach”, Intern. J. of Solids and Structures, 48:3–4 (2011), 441–449 | DOI | MR | Zbl
[27] R. Rizzoni, S. Dumont, F. Lebon, E. Sacco, “Higher order model for soft and hard elastic interfaces”, Intern. J. of Solids and Structures, 51:23–24 (2014), 4137–4148 | DOI
[28] N. S. Bakhvalov, G. P. Panasenko, Homogenization: averaging processes in periodic media. Mathematical problems in mechanics of composite materials, Mathematics and its applications, 36, Kluwer academic publishers, Dordrecht–Boston–London, 1989, 34 pp. | DOI | MR
[29] B. E. Pobedria, Mechanics of composite materials, MGU, M., 1984
[30] K. A. Wilkinson, D. A. Ordonez, Adhesive properties in nanomaterials, Nova Science Publishers, Inc, 2011, 188 pp.
[31] F. Lebon, S. Dumont, R. Rizzoni, J. C. López-Realpozo, R. Guinovart-Díaz, R. Rodríguez-Ramos, J. Bravo-Castillero, F. J. Sabina, “Soft and hard anisotropic interface in composite materials”, Composites Part B: Engineering, Elsevier, 90 (2016), 58–68 | DOI
[32] R. Rodríguez-Ramos, R. de Medeiros, R. Guinovart-Díaz, J. Bravo-Castillero, J. A. Otero, V. Tita, “Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence”, Composite Struct., Elsevier, 99 (2013), 264–275 | DOI
[33] Y. I. Dimitrienko, A. P. Sokolov, “Elastic properties of composite materials”, Mathematical Models and Computer Simulations, 2:1 (2010), 116–130 | DOI
[34] IU. I. Dimitrienko, A. P. Sokolov, “CHislennoe modelirovanie kompozitsionnykh materialov s mnogourovnevoj strukturoj”, Izv. RAN. Fizicheskaia ser., 75:11 (2011), 1551–1556
[35] P. Rahul-Kumar, A. Jagota, S. J. Bennison, S. Saigal, S. Muralidhar, “Polymer interfacial fractu?re simulations using cohesive elements”, Acta Materialia, 47:15–16 (1999), 4161–4169 | DOI
[36] W. G. Jiang, R. Z. Zhong, Q. H. Qin, Y. G. Tong, “Homogenized finite element analysis $n$ effective elastoplastic mechanical behaviors of composite with imperfect interfaces”, Intern. Journal of Molecular Sciences, 15:12 (2014), 23389–23407 | DOI
[37] S. Guessasma, N. Benseddiq, D. Lourdin, “Effective Young?s modulus of biopolymer composites with imperfect interface”, Int. J. of Solids and Struct., Elsev., 47:18–19 (2010), 2436–2444 | DOI | Zbl
[38] A. A. Nasedkina, A. Rajagopal, “Mathematical and computer homogenization models for bulk mixture composite materials with imperfect interfaces”, Materials Physics and Mechanics, 37:1 (2018), 31–34
[39] M. Hamsasew, W. S. Yu., “A micromechanical approach to imperfect interface analysis of heterogeneous materials”, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2015)
[40] V. Schetinin, Kh. Dmitriy, nla3d open source FEM framework, , 2018 https://github.com/dmitryikh/nla3d/
[41] A. P. Sokolov, V. N. Shchetinin, “Identifikatsiia uprugikh svojstv adgezionnogo sloia dispersno-armirovannykh kompozitnykh materialov na osnove eksperimentalnykh dannykh”, Mekhanika kompozitsionnykh materialov i konstruktsij, 24:4 (2018), 555–581 | DOI
[42] O. C. Zienkiewicz, The finite element method in engineering science, McGraw-Hill, London–New York, 1971, 521 pp. | MR | Zbl
[43] J. Smith, “Experimental values for the elastic constants of a particulate filled glassy polymer”, J. Res. NBS., 80A:1 (1976), 45–49 | DOI
[44] P. D. Soden, M. J. Hinton, A. S. Kaddour, “Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates”, Composites Science and Technology, 58:7 (1998), 1011–1022 | DOI