Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_8_a6, author = {A. Yu. Bondarenko and A. I. Likhoded and V. V. Sidorov}, title = {Modeling of a space-rocket structures when subjected to active forces by mechanical analogs}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {106--118}, publisher = {mathdoc}, volume = {32}, number = {8}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_8_a6/} }
TY - JOUR AU - A. Yu. Bondarenko AU - A. I. Likhoded AU - V. V. Sidorov TI - Modeling of a space-rocket structures when subjected to active forces by mechanical analogs JO - Matematičeskoe modelirovanie PY - 2020 SP - 106 EP - 118 VL - 32 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_8_a6/ LA - ru ID - MM_2020_32_8_a6 ER -
%0 Journal Article %A A. Yu. Bondarenko %A A. I. Likhoded %A V. V. Sidorov %T Modeling of a space-rocket structures when subjected to active forces by mechanical analogs %J Matematičeskoe modelirovanie %D 2020 %P 106-118 %V 32 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_8_a6/ %G ru %F MM_2020_32_8_a6
A. Yu. Bondarenko; A. I. Likhoded; V. V. Sidorov. Modeling of a space-rocket structures when subjected to active forces by mechanical analogs. Matematičeskoe modelirovanie, Tome 32 (2020) no. 8, pp. 106-118. http://geodesic.mathdoc.fr/item/MM_2020_32_8_a6/
[1] A. I. Likhoded, “Using mechanical analogs in calculating vibrations of shells joined to rods”, Soviet Applied Mechanics, 14:6 (1978), 565–573 | DOI | Zbl | Zbl
[2] A. I. Likhoded, “Construction of mechanical analogs of shells serially connected into a rod system”, Soviet Applied Mechanics, 22:9 (1986), 871–877 | DOI | MR | Zbl
[3] Y. Chatman, S. Gangadharan, J. Ristow, J. Sudermann, C. Walker, C. Hubert, “Modeling and parameter estimation of spacecraft fuel slosh with diaphragms using pendulum analogs”, Advances in the Astronautical Sciences, 128 (2007), 53–71
[4] K. Park, S. Lee, S. Shin, “Longitudinal characteristics analysis of a space launch vehicle using one-and three-dimensional combined modeling for pogo prediction”, AIAA Space and Astronautics Forum and Exposition, 2018, AIAA 2018-5416, 14 pp.
[5] G. N. Mikishev, B. I. Rabinovich, Dinamika tverdogo tela s polostiami, chastichno zapolnennymi zhidkostiu, Mashinostroenie, M., 1968, 531 pp.
[6] K. S. Kolesnikov, Dinamika raket, Mashinostroenie, M., 2003, 520 pp.
[7] A. V. Karmishin, A. I. Likhoded, N. G. Panichkin, S. N. Sukhinin, Osnovy otrabotki prochnosti raketno-kosmicheskikh konstruktsii, Mashinostroenie, M., 2007, 480 pp.
[8] A. S. Konyukhov, “Dynamic simulation model of liquid-propellant packet scheme launch vehicles”, Strength of Materials, 47:2 (2015), 332–340 | DOI | MR
[9] V. A. Buzhinskii, Dinamika i ustoichivost dvizheniia raket, Izd. FGUP TSNIImash, Korolev, 270 pp.
[10] V. P. Shmakov, Izbrannye raboty po gidrouprugosti i dinamike uprugikh konstruktsiy, Izdatelstvo MGTU im. N.E. Baumana, M., 2011, 287 pp.
[11] V. G. Grigoriev, “Metodika rascheta parametrov dinamicheskoy modeli uprugoi konstruktsii, soderzhashchei zhidkost”, Izbrannye problem prikladnoy mekhaniki i matematiki, MAMI, M., 2003, 93–126
[12] M. Chiba, H. Watanabe, H. F. Bauer, “Hydroelastic coupled vibrations in a cylindrical container with a membrane bottom, containing liquid with surface tension”, Journal of Sound and Vibrations, 251:4 (2002), 717–740 | DOI
[13] V. A. Buzhinskii, “The equations of the perturbed motion of a rocket as a thin-walled structure with a liquid”, Journal of Applied Mathematics and Mechanics, 73:6 (2009), 692–695 | DOI | MR
[14] K. K. Win, A. N. Temnov, “Oscillations of Immiscible Liquids in a Stationary Cylindrical Vessel and their Mechanical Analogs”, Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2016, no. 3, 57–69
[15] M. Chiba, H. Magata, “Influence of liquid sloshing on dynamics of flexible space structures”, Journal of Sound and Vibrations, 401 (2017), 1–22 | DOI
[16] C. Ma, X. Zhang, Y. Luo, S. Zhang, “Dynamic behaviors of flexible fluid containers with fuel consumption”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229:15 (2015), 2737–2749 | DOI
[17] Y. Hao, G. A. Tang, D. Xu, Q. Yang, “Finite-element modeling and frequency-domain analysis of liquid-propulsion launch vehicle”, AIAA Journal, 52:11 (2015), 3297–3304 | DOI
[18] S. Lee, J. Sim, S. Shin, Y. Kim, “Longitudinal modal analysis of a LOX-filled tank using the virtual mass method”, Intern. J. of Aeronautical Space Sci., 18:4 (2017), 807–815 | DOI
[19] I. M. Babakov, Teoriia kolebaniy, Nauka, M., 1968, 560 pp.
[20] A. Iu. Bondarenko, A. I. Likhoded, A. A. Malinin, V. V. Sidorov, “Issledovanie vibrodinamiki konstruktsiy pri kinematicheskom i silovom vneshnem vozdeistviiax”, Kosmonavtika i raketstoenie, 2017, no. 3 (96), 5–13
[21] MD Nastran, “Coupled Fluid-Structure Analysis”, Dynamic Analysis User's Guide, Revision 0, Chapter 11, June 25, 2010, 556 pp.
[22] A. Iu. Bondarenko, M. A. Borisov, “Raschet ekvivalentnyx ostsilliatorov, imitiruiushchikh kolebaniia zhidkosti v obolochkakh, s ispolzovaniem metoda virtualnykh mass”, 7-ia Mezhdunarodnaia nauch.-tekhn. konferentsiia «K.E. Tsiolkovsiy — 160 let so dnia rozhdeniia. Kosmonavtika, radioelektronika, geoinformatika» (Riazan, 2017), 111–116