Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_8_a5, author = {S. P. Dudarov and N. D. Kirillov}, title = {Mathematical model of the neural network conclusion defuzzificator in fuzzy-logic output procedures and its software implementation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {91--105}, publisher = {mathdoc}, volume = {32}, number = {8}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_8_a5/} }
TY - JOUR AU - S. P. Dudarov AU - N. D. Kirillov TI - Mathematical model of the neural network conclusion defuzzificator in fuzzy-logic output procedures and its software implementation JO - Matematičeskoe modelirovanie PY - 2020 SP - 91 EP - 105 VL - 32 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_8_a5/ LA - ru ID - MM_2020_32_8_a5 ER -
%0 Journal Article %A S. P. Dudarov %A N. D. Kirillov %T Mathematical model of the neural network conclusion defuzzificator in fuzzy-logic output procedures and its software implementation %J Matematičeskoe modelirovanie %D 2020 %P 91-105 %V 32 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_8_a5/ %G ru %F MM_2020_32_8_a5
S. P. Dudarov; N. D. Kirillov. Mathematical model of the neural network conclusion defuzzificator in fuzzy-logic output procedures and its software implementation. Matematičeskoe modelirovanie, Tome 32 (2020) no. 8, pp. 91-105. http://geodesic.mathdoc.fr/item/MM_2020_32_8_a5/
[1] E. V. Suslova, “Intellektualnye sistemy podderzhki priniatiia reshenii”, Molodoi uchenyi, 2017, no. 3, 171–174
[2] A. A. Baichenko, L. A. Baichenko, V. A. Aret, “Primenenie nechetkoi logiki v upravlenii predpriiatiem pishchevoi promyshlennosti”, Nauch. zhurnal NIU ITMO, 2014, no. 3, 35–69
[3] V. B. Uspenskii, L. V Shipulina, Sovremennaia teoriia upravleniia. Metody sinteza i optimizacii sistem upravleniia, Konspekt lekcii dlia studentov specialnostei 7.080202 i 7.080201, NTUKHPI, Kh., 2013, 136 pp.
[4] I. S. Kobersi, A. V. Kiiashko, E. A. Makedonov, E. R. Kramarenko, V. I. Finaev, “Sistema upravleniia napriazheniem generatora na baze nechetkoi logiki”, Inzhenernyi vestnik Dona, 2015, no. 2-2, 1–14
[5] R. Syahputra, “Application of neuro-fuzzy method for prediction of vehicle fuel consumption”, J. of Theoretical Applied Information Technology, 86:1 (2016), 138–150
[6] R. C. David, R. B. Grad, R. E. Precup, M. B. Rădac, C. A. Dragoş, E. M. Petriu, “An approach to fuzzy modeling of anti-lock braking systems”, Soft Computing in Industrial Applications, Springer, Cham, 223 (2014), 83–93 | DOI
[7] L. Sun, W. Huo, “Adaptive fuzzy control of spacecraft proximity operations using hierarchical fuzzy systems”, IEEE/ASME Trans. Mechatronics, 21:3 (2016), 1629–1640 | DOI
[8] S. P. Dudarov, P. L. Papaev, Algebra nechetkoi logiki i analiz nechetkikh mnozhestv, ucheb. posobie, RKHTU im. D.I. Mendeleeva, M., 2019, 84 pp.
[9] W. T. Dobrosielski, J. Szczepański, H. Zarzycki, “A proposal for a method of defuzzification based on the golden Ratio-GR”, Novel Developments in Uncertainty Representation and Processing, Springer, 2016, 75–84 | DOI
[10] N. S. Ermolaev, N. D. Kirillov, S. P. Dudarov, “Model universalnogo neirosetevogo defazzifikatora”, Uspekhi v khimii i khimicheskoi tekhnologii, 31:8 (189) (2017), 66–68
[11] A. N. Kudriashov, “Modelirovanie rasseianiia primesi v atmosfere s ispolzovaniem nechetkogo kletochnogo avtomata”, Uspekhi v khimii i khim. Tekhnologii, XXVI:1 (130) (2012), 24–28
[12] M. M. Adnan, A. Sarkheyli, A. M. Zain, H. Haron, “Fuzzy logic for modeling machining pro-cess: a review”, Artificial Intelligence Review, 43:3 (2015), 345–379 | DOI
[13] S. P. Dudarov, P. L. Papaev, Teoreticheskie osnovy i prakticheskoe primenenie iskusstvennykh neironnykh setei, Uch. posobie, RKHTU im. D.I. Mendeleeva, M., 2014, 104 pp.
[14] S. O. Ianchi, S. P. Dudarov, “Ispolzovanie obieektno-orientirovannogo podkhoda pri razrabotke programmnykh sredstv neirosetevogo modelirovaniia”, Uspekhi v khimii i khim. tekhnologii, XXII:1(81) (2008), 55–59