Nonlinear Dirac equation for graphene
Matematičeskoe modelirovanie, Tome 32 (2020) no. 8, pp. 43-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear Dirac equation in order to describe collective electronic phenomena. In comparison to the other papers on the given topic the interaction term includes the sum of the spinor components’ squares instead of their difference. We investigate the properties of the obtained nonlinear equation, pretending to describe hightemperature ferromgnetism without assumptions about the key role of defects. The numerical simulation was done for simple boundary and initial conditions with Lax–Friedrichs scheme.
Keywords: nonlinear Dirac equation, numerical simulation.
Mots-clés : graphene
@article{MM_2020_32_8_a3,
     author = {A. A. Gladkikh and G. G. Malinetskii},
     title = {Nonlinear {Dirac} equation for graphene},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--56},
     publisher = {mathdoc},
     volume = {32},
     number = {8},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_8_a3/}
}
TY  - JOUR
AU  - A. A. Gladkikh
AU  - G. G. Malinetskii
TI  - Nonlinear Dirac equation for graphene
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 43
EP  - 56
VL  - 32
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_8_a3/
LA  - ru
ID  - MM_2020_32_8_a3
ER  - 
%0 Journal Article
%A A. A. Gladkikh
%A G. G. Malinetskii
%T Nonlinear Dirac equation for graphene
%J Matematičeskoe modelirovanie
%D 2020
%P 43-56
%V 32
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_8_a3/
%G ru
%F MM_2020_32_8_a3
A. A. Gladkikh; G. G. Malinetskii. Nonlinear Dirac equation for graphene. Matematičeskoe modelirovanie, Tome 32 (2020) no. 8, pp. 43-56. http://geodesic.mathdoc.fr/item/MM_2020_32_8_a3/

[1] V. L. Derbov et al., “Model for spin waves and lasing in monolayer graphene films”, Saratov Fall Meeting 2014, International Society for Optics and Photonics, 2015

[2] Y. Wang et al., “Room-temperature ferromagnetism of graphene”, Nano letters, 9:1 (2008), 220–224 | DOI

[3] T. I. Belova, A. E. Kudryavtsev, “Solitons and their interactions in classical field theory”, Physics-Uspekhi, 40:4 (1997), 359 | DOI | DOI

[4] T. Vachaspati, Kinks and domain walls: An introduction to classical and quantum solitons, Cambridge University Press, 2006 | MR | Zbl

[5] Grachyov D. D. i dr., “Ferromagnetizm v grafenovyh i fullerenovyh nanostrukturah. Teoriya, modelirovanie, eksperiment”, Vestnik RUDN. Seriya «Matematika, informatika, fizika», 1 (2010), 22–27

[6] Y. E. Lozovik et al, “Collective electron phenomena and electron transport in graphene Scientific Session of the Physical Sciences Division of the Russian Academy Of Sciences (27 February 2008)”, Physics-Uspekhi, 51:7 (2008), 727

[7] V. Maslov, Svojstva grafena i mernoe uravnenie Diraka, MGU im. M.V. Lomonosova, M.

[8] D. D. Ivanenko, “Zamechanie o teorii vzaimodejstviya cherez chasticy”, ZHETF, 8 (1938), 260–266 | Zbl

[9] M. Soler, “Classical, stable, nonlinear spinor field with positive rest energy”, Physical Review D, 1:10 (1970), 2766 | DOI

[10] E. T. Akhmedov, F. K. Popov, V. M. Slepukhin, “Infrared dynamics of the massive $\varphi^4$ theory on de Sitter space”, Physical Review D, 88:2 (2013), 024021 | DOI