Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_8_a2, author = {V. N. Simonov and N. L. Matison and O. V. Boytsova and E. B. Markova}, title = {Modeling of vibration of nanoporous microcantilevers from anodic aluminum oxide for biochemical sensors}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {31--42}, publisher = {mathdoc}, volume = {32}, number = {8}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_8_a2/} }
TY - JOUR AU - V. N. Simonov AU - N. L. Matison AU - O. V. Boytsova AU - E. B. Markova TI - Modeling of vibration of nanoporous microcantilevers from anodic aluminum oxide for biochemical sensors JO - Matematičeskoe modelirovanie PY - 2020 SP - 31 EP - 42 VL - 32 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_8_a2/ LA - ru ID - MM_2020_32_8_a2 ER -
%0 Journal Article %A V. N. Simonov %A N. L. Matison %A O. V. Boytsova %A E. B. Markova %T Modeling of vibration of nanoporous microcantilevers from anodic aluminum oxide for biochemical sensors %J Matematičeskoe modelirovanie %D 2020 %P 31-42 %V 32 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_8_a2/ %G ru %F MM_2020_32_8_a2
V. N. Simonov; N. L. Matison; O. V. Boytsova; E. B. Markova. Modeling of vibration of nanoporous microcantilevers from anodic aluminum oxide for biochemical sensors. Matematičeskoe modelirovanie, Tome 32 (2020) no. 8, pp. 31-42. http://geodesic.mathdoc.fr/item/MM_2020_32_8_a2/
[1] E. Peiner, H. S. Wasisto, “Cantilever Sensors”, Sensors, 19:9 (2019), 2043–2045 | DOI
[2] L. Schlur, J. R. Calado, D. Spitzer, “Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever”, R. Soc. open sci., 5, 180510 | DOI
[3] B. N. Johnson, R. Mutharasan, “Biosensing using dynamic-mode cantilever sensors: A review”, Biosensors Bioelectronics, 32 (2012), 1–18 | DOI
[4] I. Pellejero, J. Agustí, M. A. Urbiztondo, J. Sesé et al, “Nanoporous silicalite-only cantilevers as micromechanical sensors: Fabrication, resonance response and VOCs sensing performance”, Sens. Actuators: B Chemical, 168 (2012), 74–82 | DOI
[5] S. Kim, K. D. Kihm, T. Thundat, “Fluidic applications for atomic force microscopy (AFM) with microcantilever sensors”, Experiments in fluids, 48 (2010), 721–736 | DOI
[6] I. S. Amiri, S. Addanki, “Simulation fabrication and characterization of micro-cantilever array based ozone sensor”, Results in Physics, 10 (2018), 923–933 | DOI
[7] R. Agarwal, R. Mukhiya, R. Sharma et al, “Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications”, Defence Science Journal, 66:5 (2016), 485–488 | DOI
[8] N. Siddaiah, D. V. Rama Koti Reddy, Y. Sankar et al, “Modeling and Simulation of Triple Coupled Cantilever Sensor for Mass Sensing Applications”, Intern. Journal of Electrical and Computer Engineering (IJECE), 5:3 (2015), 403–408 | DOI
[9] R. Datar, S. Kim, S. Jeon et al., “Cantilever Sensors: Nanomechanical Tools for Diagnostics”, MRS Bulletin, 34 (2009), 449–454 | DOI
[10] V. Chivukula, M. Wang, H. F. Ji, A. Khaliq, J. Fang, K. Varahramyan, “Simulation of SiO$_2$-based piezoresistive microcantilevers”, Sensors and Actuators A, 125 (2006), 526–533 | DOI
[11] P.-S. Lee, J. Lee, N. Shin et al., “Microcantilevers with Nanochannels”, Advanced materials, 20:9 (2008), 1732–1737 | DOI
[12] O. Boytsova, A. Klimenko, V. Lebedev et al, “Nanomechanical humidity detection through porous alumina cantilevers”, Beilstein J. Nanotechnol., 6 (2015), 1332–1336 | DOI
[13] V. N. Simonov, N. L. Matison, O. A. Boytsova, O. K. Krasilnikova, “Computer Simulation of Nanoporous Alumina Microcantilevers and the Study of the influence of Porosity on the elastic moduli of oxide”, Nanotechnologies in Russia, 10:5-6 (2015), 428–433 | DOI
[14] G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties, A Handbook, M.I.T. Press, Cambridge, Massachusetts, 1971, 146 pp.
[15] V. N. Simonov, L. P. Loshmanov, E. B. Markova, “Composite model of the dependence of mechanical properties of anodic aluminum oxide on porosity”, Inorganic Materials: Applied Research, 8 (2017), 813–815 | DOI
[16] W. Martienssen, H. Warlimon, Springer Handbook of Condensed Matter and Materials Data, Springer, Germany, 2005, 1119 pp.
[17] I. V. Andriianov, V. V. Danishevski, A. O. Ivankov, Asimptoticheskie metody v teorii kolebanii balok i plastin, PGASA, Dnepropetrovsk, 2010, 217 pp.