Study on the formation of Saffman--Taylor instability in oil reservoir in two-dimensional formulation
Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 127-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to simulation of oil displacement by water and the formation of Saffman–Taylor instability. A circular domain with one injection well and 8 production wells located along the contour around the injection well is considered. To study the patterns of oil displacement by water, hydrostatic pressure, seepage velocity of oil and water, oil saturation are calculated. The graphical analysis of the solution considers mainly the oil saturation field. The calculation of the pressure field is done by means of solving the steady-state seepage equation. The oil-water seepage velocity is calculated using the linear Darcy's law. The oil saturation field is calculated by means of the solution of the advection transport equation. The two-phase nature of the flow lies in various relative phase permeabilities for oil and water. The Brooks–Corey model is used to calculate the relative phase permeabilities. The equations are solved numerically using the finite volume method. An irregular triangular grid is used to discretize the computational domain. As a result, it was established that the form of the Saffman–Taylor instability, by virtue of its randomness, strongly depends on the computational grid. After flooding of producing wells, the phase boundary stabilizes. Instability increases with increasing ratio of dynamic viscosities of oil and water.
Keywords: Saffman–Taylor instability, viscous fingering, seepage flow, porous media, finite volume method, Darcy's law, two-phase flow, Brooks–Corey model.
@article{MM_2020_32_7_a7,
     author = {S. A. Bublik and M. A. Semin},
     title = {Study on the formation of {Saffman--Taylor} instability in oil reservoir in two-dimensional formulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {127--142},
     publisher = {mathdoc},
     volume = {32},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_7_a7/}
}
TY  - JOUR
AU  - S. A. Bublik
AU  - M. A. Semin
TI  - Study on the formation of Saffman--Taylor instability in oil reservoir in two-dimensional formulation
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 127
EP  - 142
VL  - 32
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_7_a7/
LA  - ru
ID  - MM_2020_32_7_a7
ER  - 
%0 Journal Article
%A S. A. Bublik
%A M. A. Semin
%T Study on the formation of Saffman--Taylor instability in oil reservoir in two-dimensional formulation
%J Matematičeskoe modelirovanie
%D 2020
%P 127-142
%V 32
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_7_a7/
%G ru
%F MM_2020_32_7_a7
S. A. Bublik; M. A. Semin. Study on the formation of Saffman--Taylor instability in oil reservoir in two-dimensional formulation. Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 127-142. http://geodesic.mathdoc.fr/item/MM_2020_32_7_a7/

[1] A. A. Lipaev, Razrabotka mestorozhdeni tiazhelykh neftei i prirodnykh bitumov, Institut komputernykh issledovanii, M.–Izhevsk, 2013, 484 pp.

[2] A. A. Korshak, A. M. Shammazov, Osnovy neftegazovogo dela, DizainPoligrafServis, Ufa, 2001, 544 pp.

[3] P. G. Saffman, G. I. Taylor, “The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid”, Proc. Royal Society, A245 (1958), 312–329 | MR | Zbl

[4] Q. Yuan, X. Zhou, J. Wang et al, “Control of Viscous Fingering and Mixing in Miscible Displacements with Time-Dependent Rates”, ALChE J., 65:1 (2019), 360–371 | DOI

[5] A. Mcdowell, S. J. Zarrouk, R. Clarke, “Modeling viscous fingering during reinjection in geothermal reservoirs”, Geothermics, 64 (2016), 220–234 | DOI

[6] M. Mishra, M. Martin, A. De Wit, “Miscible viscous fingering with linear adsorption on the porous matrix”, Physics of Fluids, 19:7 (2007), 9 pp. | DOI

[7] J. Moortgat, “Viscous and gravitational fingering in multiphase compositional and compressible flow”, Advances in Water Resources, 89 (2016), 53–66 | DOI

[8] R. Maes, G. Rousseaux, B. Scheid, et all, “Experimental Study of dispersion and miscible viscous fingering of initially circular samples in Hele-Shaw cells”, Physics of Fluids, 22:12 (2010), 12 pp. | DOI | Zbl

[9] A. V. Stepiko, “Issledovanie vytesneniia viazkoi zhidkosti v iacheike Khele-Shou”, Problemy geologii i osvoenie nedr, v. II, Isd-vo Tomskogo politekhn. univer., Tomsk, 2014, 838 pp.

[10] Iu. V. Pakharukov, F. K. Shabiev, R. F. Safargaliev, “Vytisnenie nefti iz poristoi sredy s ispolsovaniem grafitovoi suspenzii”, Pisma v ZHTF, 44:4 (2018), 3–8

[11] O. A. Logvinov, “Mechanismy stabilizatsii vytesneniia viazkoi zhidkosti iz koltseobraznoi iacheiki Khele-Shou s istochnikom”, Vestnik kibernetiki, 2016, no. 2, 147–153

[12] A. A. Kostina, M. S. Zhelnin, O. A. Plekhov, I. A. Panteleev, “Issledovanie effektivnosti primeneniia analiticheskikh podchodov dlia opisaniia evoliutsii parovoi kamery pri dobyche nefti metodom parogravitatsionnogo drenirovaniia”, Geosistemy perekhodnykh zon, 2019, no. 1, 54–64

[13] B. Jha, L. Gueto-Felgueroso, R. Juanes, “Fluid Mixing from Viscous Fingering”, Physical Review Letters, 106:19 (2011), 4 pp. | DOI | Zbl

[14] N. N. Smirnov, V. V. Tiurenkova, A. B. Kiselev, V. F. Nikitin, “Filtratsionnye techeniia v poristoi srede”, Severnyi region: nauka, obrazovanie, kultura, 2015, no. 2, 74–86

[15] R. G. Shagiev, Issledovanie skvazhin po KVD, Nauka, M., 1998, 144 pp.

[16] V. A. Korotenko, A. N. Sumin, A. K. Iagafarov, “Uravneniia pezoprovodnosti dvukhfaznoi filtratsii nefti i vody”, Nauka i TEK, 2011, no. 2, 17–18

[17] M. Muskat, Physical principles of oil production, McGraw-Hill Book Company, N.Y.–Toronto–L., 1949, 922 pp.

[18] H. M. Nick, S. K. Matthäi, “Comparison of Three FE-FV Numerical Schemes for Single- and Two-Phase Flow Simulation of fractured Porous Media”, Transport in Porous Media, 90:2 (2001), 421–444 | DOI | MR

[19] K. Li, R. N. Horne, “Comparison of methods to calculate relative permeability from capillary pressure in consolidated water-wet porous media”, Water Resources Res., 42:6 (2006), 421–444

[20] F. Mokalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Fluid Mechanics and its applications, 113, Springer, Cham–Heidelberg–N.Y.–Dordrecht–L., 2016, 791 pp. | DOI | MR

[21] A. E. Krasnoshtein, B. P. Kazakov, A. V. Shalimov, “Modeling complex air-gas-heat dynamic processes in a mine”, J. of Mining Science, 44:6 (2008), 616–621 | DOI