Modeling of the stationary electromagnetic field based on the Maxwell equations
Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 113-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generation of an electromagnetic field in a region with a perfectly conducting boundary by a long duration pulse of ionizing radiation is considered. The problem of calculating the field by numerically solving the complete system of Maxwell equations is posed. The approximations of the large and small radiation conductivity of the medium in the region are formulated. Аnalytical estimates of the solution of Maxwell's equations are constructed for approximations in simplified formulations. By analyzing them, methods for calculating the electromagnetic field in the framework of a model based on the Maxwell equations in the full formulation are substantiated. An approach to modeling the field in the formulations that require an unacceptable amount of computation for the stable solution of the Maxwell difference equations is proposed. The approach makes it possible to simulate the generation of an electromagnetic field by radiation from outer space in apparatus blocks using programs that solve Maxwell's equations in a complete formulation.
Keywords: electromagnetic field, radiation belt, bremsstrahlung, Maxwell equations, radiation conductivity, external current.
@article{MM_2020_32_7_a6,
     author = {M. B. Markov and S. V. Parot'kin},
     title = {Modeling of the stationary electromagnetic field based on the {Maxwell} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--126},
     publisher = {mathdoc},
     volume = {32},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_7_a6/}
}
TY  - JOUR
AU  - M. B. Markov
AU  - S. V. Parot'kin
TI  - Modeling of the stationary electromagnetic field based on the Maxwell equations
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 113
EP  - 126
VL  - 32
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_7_a6/
LA  - ru
ID  - MM_2020_32_7_a6
ER  - 
%0 Journal Article
%A M. B. Markov
%A S. V. Parot'kin
%T Modeling of the stationary electromagnetic field based on the Maxwell equations
%J Matematičeskoe modelirovanie
%D 2020
%P 113-126
%V 32
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_7_a6/
%G ru
%F MM_2020_32_7_a6
M. B. Markov; S. V. Parot'kin. Modeling of the stationary electromagnetic field based on the Maxwell equations. Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 113-126. http://geodesic.mathdoc.fr/item/MM_2020_32_7_a6/

[1] G. Watkin's, Radiation Damage in Semiconductors, Academic Press, N.Y., 1965

[2] L. D. Landau, E. M. Lifshitz, L. P. Pitaevskii, Electrodynamics of Continuous Media, v. 8, 1st Edition, Butterworth–Heinemann, 1984

[3] A. V. Berezin, A. A. Kriukov, B. D. Pliushchenkov, “The method of electromagnetic field with the given wavefront calculation”, MM, 2011, 109–126 | Zbl

[4] B. Bakholdin, A. V. Berezin, A. A. Kryukov, M. B. Markov, B. D. Plyushchenkov, D. N. Sadovnichii, “Electromagnetic wave in the medium with dispersion of dielectric permittivity”, Math. Models Comp. Simul., 9:2 (2017), 190–200 | DOI | MR

[5] A. V. Berezin, A. S. Vorontsov, S. V. Zakharov, M. B. Markov, S. V. Parot'kin, “Modeling of gaseous discharge's electron stage”, MM, 5:5 (2013), 492–500

[6] S. K. Godunov, V. S. Riabenkiy, Difference Schemes: An Introduction to the Underlying Theory, Transl. from the Russian by E.M. Gelbard, Studies in Mathematics and its Applications, 19, North-Holland, Amsterdam; Wiley, New York, 1964, 289 pp. | MR

[7] J. P. Boris, D. L. Book, “Flux-corrected transport”, J. Comp. Phys., 11:1 (1973), 38–69 ; 18:3 (1975), 248–283 | DOI | MR | Zbl | DOI | MR | Zbl

[8] S. N. Vernov, A. E. Chudakov, “Terrestrial corpuscular and cosmic rays”, Space Research, ed. H. Kallmann Bijl, Amsterdam, 1960, 751–796

[9] H. Davies, H. A. Bethe, L. C. Maximon, “Theory of bremsstrahlung and pair production. Integral cross section for pair production”, Phys. Rev., 93 (1954), 788–795 | MR

[10] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, v. 2, 4th Edition, Butterworth–Heinemann, 1975 | MR

[11] W. Heitler, The Quantum Theory of Radiation, Clarendon Press, Oxford, 1954 | Zbl

[12] N. F. Mott, H. S. W. Massey, The theory of atomic collisions, Clarendon Press, Oxford, 1965

[13] M. Gryzinski, “Classic Theory of Electronic and Ionic Inelastic Collisions”, Phys. Rev., 115:2 (1959), 374–383 | DOI | MR | Zbl

[14] Yong-Ki Kim, M. E. Rudd, “Theory for Ionization of Molecules by Electrons”, Phys. Rev., 50 (1994), 3954–3967 | DOI

[15] M. B. Markov, S. V. Parot'kin, “The kinetic model of radiation-induced gas conductivity”, Mathematical Models and Computer Simulations, 3:6 (2011), 712–722 | DOI | MR | Zbl

[16] D. N. Sadovnichij, A. P. Tiutnev, S. A. Khatipov, Iu. A. Militsin, “Radiatsionnaya elektroprovodnost rezin i metod ee prognozirovaniyia”, Khimiia vysokikh energij, 32:1 (1998), 7–13 | MR

[17] A. S. Ilyinskiy, V. V. Kravtsov, A. G. Sveshnikov, Matematicheskie modeli elektrodinamiki, Vysshaya shkola, M., 1991

[18] A. N. Tikhonov, A. A. Samarskiy, Uravneniia matematicheskoy fiziki, Nauka, M., 1977 | MR

[19] A. Erdélyi, Asymptotic expansions, Dover Publications, 1956 | MR | Zbl