Econometric modeling of the balanced potential growth
Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 98-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides vector autoregression model with an additional regularization problem similar to the Hodrick-Prescott filter problem for modeling a single, i.e. a balanced growth rate of the structural component of the main macroeconomic indicators of the Russian economy. The model includes real GDP without government consumption, real household consumption, real fixed capital investment, real export, real import and the real effective ruble exchange rate. The oil prices are exogenously included in the model. It is assumed that GDP without government consumption and its components have balanced potential growth rate. The actual discrepancies in time series are explained by the different long-term oil prices multipliers, and by the stochastic shocks. Based on the proposed model we calculate the impacts of the oil prices shocks and the structural component on GDP without government consumption and its components.
Keywords: potential growth rate, Russian economy, oil prices.
@article{MM_2020_32_7_a5,
     author = {A. V. Polbin and N. D. Fokin},
     title = {Econometric modeling of the balanced potential growth},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {98--112},
     publisher = {mathdoc},
     volume = {32},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_7_a5/}
}
TY  - JOUR
AU  - A. V. Polbin
AU  - N. D. Fokin
TI  - Econometric modeling of the balanced potential growth
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 98
EP  - 112
VL  - 32
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_7_a5/
LA  - ru
ID  - MM_2020_32_7_a5
ER  - 
%0 Journal Article
%A A. V. Polbin
%A N. D. Fokin
%T Econometric modeling of the balanced potential growth
%J Matematičeskoe modelirovanie
%D 2020
%P 98-112
%V 32
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_7_a5/
%G ru
%F MM_2020_32_7_a5
A. V. Polbin; N. D. Fokin. Econometric modeling of the balanced potential growth. Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 98-112. http://geodesic.mathdoc.fr/item/MM_2020_32_7_a5/

[1] R. J. Hodrick, E. C. Prescott, “Postwar US business cycles: an empirical investigation”, J. of Money, Credit, and Banking, 29:1 (1997), 1–16

[2] M. Baxter, R. G. King, “Measuring business cycles: approximate band-pass filters for economic time series”, Review of economics and statistics, 81:4 (1999), 575–593 | DOI | MR

[3] S. Beveridge, C. R. Nelson, “A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the ‘business cycle’”, Journal of Monetary economics, 7:2 (1981), 151–174 | DOI

[4] P. St-Amant et al, Measurement of the Output Gap: A discussion of recent research at the Bank of Canada, Technical Report No 79, Bank of Canada, 1997, 75 pp.

[5] Sinel'nikov-Murylev S., Drobyshevskij S., Kazakova M., “Dekompoziciya tempov rosta VVP Rossii v 1999-2014 godah”, Ekonomicheskaya politika, 2014, no. 5, 7–37

[6] N. Vashchelyuk, A. Zubarev, P. Trunin, Determination of the Output Gap for the Russian Economy, Russ. Presidential Acad. of Nation. Econ. Publ. Administration, 2016, 83 pp.

[7] N. V. Orlova, S. K. Egiev, “Strukturnye faktory zamedleniya rosta rossijskoj ekonomiki”, Voprosy ekonomiki, 2015, no. 12, 69–84

[8] N. V. Orlova, N. A. Lavrova, “Potencial'nyj rost kak otrazhenie perspektiv rossijskoj ekonomiki”, Voprosy ekonomiki, 2019, no. 4, 5–20 | MR

[9] M. Villani, “Steady-state priors for vector autoregressions”, J. of Applied Econometrics, 24:4 (2009), 630–650 | DOI | MR

[10] M. Clements, D. Hendry, Forecasting economic time series, Cambridge Univ. Press, 1998, 390 pp. | MR

[11] R. King et al, “Stochastic Trends and Economic Fluctuations”, American Economic Review, 81:4 (1991), 819–40

[12] A. V. Polbin, “Ocenka vliyaniya shokov neftyanyh cen na rossijskuyu ekonomiku v vektornoj modeli korrekcii oshibok”, Voprosy ekonomiki, 2017, no. 10, 27–49

[13] N. P. Pil'nik, S. A. Radionov, I. P. Stankevich, “Obobshchennaya mnogoproduktovaya dekompoziciya elementov ispol'zovaniya VVP Rossii”, Ekonomicheskij zhurnal VSHE, 22:2 (2018), 251–274

[14] K. Whelan, “A guide to US chain aggregated NIPA data”, Review of income and wealth, 48:2 (2002), 217–233 | DOI

[15] A. V. Polbin, A. A. Skrobotov, “Testirovanie nalichiya izlomov v trende strukturnoj komponenty VVP RF”, Ekonom. zhurnal Vysshej shkoly ekonomiki, 20:4 (2016), 588–623