Study of different approximations for solving heat transfer
Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 77-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this work is to study and compare different approximations to the system of equations which describe radiative heat transfer in optically thick and thin media. Asymptotic analysis is used for optically thick media. For optically thin media we use an approach that reduces diffusion equations to the kinetic one. Results of our study suggest that for optically thick media, solutions obtained with the approximations do converge to the solution of the kinetic equation as optical thickness increases. This follows from asymptotic analysis. For optically thin media, the convergence is only possible to quasitransport and quasi-diffusion solutions.
Keywords: radiative heat transfer, radiative heat transfer approximations.
@article{MM_2020_32_7_a4,
     author = {A. A. Shestakov},
     title = {Study of different approximations for solving heat transfer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--97},
     publisher = {mathdoc},
     volume = {32},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_7_a4/}
}
TY  - JOUR
AU  - A. A. Shestakov
TI  - Study of different approximations for solving heat transfer
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 77
EP  - 97
VL  - 32
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_7_a4/
LA  - ru
ID  - MM_2020_32_7_a4
ER  - 
%0 Journal Article
%A A. A. Shestakov
%T Study of different approximations for solving heat transfer
%J Matematičeskoe modelirovanie
%D 2020
%P 77-97
%V 32
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_7_a4/
%G ru
%F MM_2020_32_7_a4
A. A. Shestakov. Study of different approximations for solving heat transfer. Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 77-97. http://geodesic.mathdoc.fr/item/MM_2020_32_7_a4/

[1] G. Bell, S. Glasstone, Nuclear Reactor Theory, Reinhold Company, 1970, 494 pp.

[2] V. V. Smelov, Lekzii po teorii perenosa neitronov, Atomizdat, M., 1978, 216 pp.

[3] Ia. B. Zeldovich, Iu. P. Raizer, Fizika udarnikh voln i visokotemperaturnikh iavlenii, Nauka, M., 1966, 688 pp.

[4] A. N. Tikhonov, A. A. Samarskii, Uravneniia matematicheskoi fiziki, Nauka, M., 1966, 724 pp. | MR

[5] Ryan McClarren, James Paul Holloway, Thomas Brunner, “On solution to the $P_n$ equations for thermal radiative transfer”, J. Comp. Phys., 227 (2008), 2864–2885 | DOI | MR | Zbl

[6] Patrick S. Brantley, Edward W. Larsen, “The simplified P3 approximation”, Nuclear science and engineering, 134 (2000), 1–21

[7] R. M. Shagaliev i dr., “Metodika SATURN-2005. Matematicheskie modeli, algoritmi I programmi”, VANT, 2013, no. 4, 17–30

[8] A. V. Babanov i dr., “Metodika MIMOZA-ND3D. Raschet trekhmernikh programm”, VANT, 2012, no. 2, 64–72

[9] V. Ju. Gusev, M. Ju. Kozmanov, E. B. Rachilov, “A method of solving implicit difference equations approximating systems of radiation transport and diffusion equations”, USSR Comp. Math. Math. Phys., 24:6 (1984), 156–161 | DOI | MR | Zbl

[10] A. D. Gadzhiev, A. A. Shestakov, “Metod «Romb» dlja reshenija mnogogruppovogo uravnenija perenosa izluchenija v P1-priblizhenii”, VANT, 1989, no. 3, 66–70

[11] V. Ya. Gol'din, “A quasi-diffusion method of solving the kinetic equation”, USSR Comp. Math. Math. Phys., 4:6 (1964), 136–149

[12] W. A. Wiesequist, D. Y. Anistratov, J. E. Morel, “A cell-local finite difference discretization of the low order of the quasidiffusion equations for neutral particle transport on unstructured quadrilateral meshes”, J. Comp. Phys., 273 (2014), 343–357 | DOI | MR

[13] E. N. Aristova, “Simulation of radiation transport in channel on the basis of quasidiffusion method”, Transport Theory and Statistical Physics, 37:05–07 (2008), 483–503 | DOI | MR | Zbl

[14] L. Chacon, G. Chen, D. A. Knoll, C. Newman, H. Park et al., “Multiscale high-order/low-order (HOLO) algorithms and applications”, J. Comp. Phys., 330, Feb. (2017), 21–45 | DOI | MR | Zbl

[15] N. G. Karlikhanov, M. Ju. Kozmanov, “Uchet kineticheskikh effektov v diffuzionnom priblizhenii dlja rascheta perenosa izluchenija”, VANT, 2010, no. 4, 3–9

[16] D. A. Koshutin, A. A. Shestakov, “Reshenie dvumernogo uravnenija perenosa teplovogo izluchenija v priblizhenii mnogogruppovogo kvaziperenosa”, VANT, 2017, no. 3, 39–50

[17] D. A. Koshutin, A. A. Shestakov, “Priblizhennii metod reshenija uravnenija perenosa teplovogo izluchenija” (Sarov, 2018), Tezisi “Supervichislenija i matmodelirovanie”, 73

[18] A. A. Shestakov, “Bezuslovno ustoichivie raznostnie skhemi dlja reshenija zadachi perenosa luchistoi energii v diffuzionnom i P1-priblizhenijakh”, VANT, 1993, no. 3, 47–53

[19] A. D. Gadzhiev, A. A. Shestakov, “Dvumernaja metodika «Romb» dlja chislennogo reshenija uravnenii perenosa izluchenija v mnogogruppovom P1-priblizhenii”, VANT, 1 (1990), 41–47

[20] A. V. Urakova, I. S. Chuboreshko, A. A. Shestakov, “Reshenie sistemi uravnenii perenosa teplovogo izluchenija v razlichnikh priblizhenijakh”, Tezisi «Supervichislenija i matmodelirovanie» (Sarov, 2018), 75

[21] A. D. Gadzhiev, A. A. Shestakov, V. N. Seleznev, E. M. Romanova, “Metodika TOM4-KD dlja chislennogo modelirovanija dvumernikh uravnenii perenosa izluchenija v mnogogruppovom kvazidiffuzionnom priblizhenii”, VANT, 2001, no. 4, 48–59

[22] A. D. Gadzhiev, A. A. Shestakov, S. A. Grabovenskaja, V. V. Zavjalov, “Primenenie TVD podkhoda k resheniju uravnenija perenosa teplovogo izluchenija kvazidiffuzionnim metodom”, VANT, 2010, no. 3, 3–14

[23] S. A. Grabovenskaja, A. A. Shestakov, “Analiz nekotorikh skhem dlja reshenija uravnenija perenosa izluchenija kvazidiffuzionnim metodom”, VANT, 2011, no. 4, 3–15

[24] S. A. Grabovenskaja, V. V. Zavjalov, A. A. Shestakov, “Konechno-obemnaja schema GROM dlja reshenija perenosa izluchenija kvazidiffuzionnim metodom”, VANT, 2014, no. 3, 47–58

[25] G. I. Marchuk, V. I. Lebedev, Chislennie metodi v teorii perenosa neitronov, Atomizdat, M., 1981, 454 pp. | MR

[26] E. W. Larsen, “Unconditionally Stable Diffusion Acceleration of the Transport Equation”, Transport Theory Statist. Phys., 11 (1982), 29 | DOI | MR | Zbl

[27] A. D. Gadzhiev, I. A. Kondakov, A. A. Shestakov, “RDSA-metod dlja chislennogo reshenija uravnenija perenosa neitronov”, VANT, 2007, no. 2, 3–19

[28] A. D. Gadzhiev, D. A. Koshutin, A. A. Shestakov, “Metod diskretnikh ordinat s TVD rekonstrukziei i sinteticheskii metod uskorenija iterazii dlja chislennogo reshenija uravnenija perenosa teplovogo izluchenija”, VANT, 2013, no. 3, 3–15

[29] A. D. Gadzhiev, D. A. Koshutin, A. A. Shestakov, “DSn-metod s TVD-rekonstrukziei i sinteticheskim P1SA-metodom uskorenija iterazii dlja chislennogo reshenija dvumernogo uravnenija perenosa teplovogo izluchenija v osesimmetrichnoi RZ-geometrii”, VANT, 2016, no. 4, 3–19

[30] M. L. Adams, E. W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI

[31] M.N. Ozisik, Radiative transfer and interactions with conduction and convection, New York, 1973, 616 pp.

[32] E. W. Larsen, G. C. Pomraning, V. C. Badham, “Asymptotic analysis of radiative transfer problems”, JQSRT, 29 (1983), 285 | DOI

[33] R. McClarren, J. P. Holloway, “Establishing an Asymptotic Diffusion Limit for Riemann Solvers on the Time-Dependent Pn Equations”, Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications Palais des Papes (Avignon, France, 2005)

[34] A. A. Shestakov, “O diffuzionnikh svoistvakh skhemi Romb dlja P1 uravnenii”, VANT, 2011, no. 2, 56–62

[35] N. Z. Cho, G. S. Lee, C. J. Park, “Partial Current-Bazed CMFD Acceleration of the 2D/1D Fusion Method for 3D Whole-Core Transport Calculations”, Trans. American Nuclear Society, 88 (2003), 594

[36] A. A. Shestakov, Issledovanie bozniknovenija oszilljazii pri reshenii odnomernogo uravnenija migrazii, preprint No 100, RFJAZ-VNIITF, Snezhinsk, 1996, 25 pp.