Simulation of thermoporoelastic medium with damage
Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 59-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a numerical simulation of thermoporoelastic medium with damage. The model generalizes the classical Biot model for poroelastic medium evolution to the case of thermoelastic effects. Damage of the medium is simulated within the framework of continuum damage mechanics, where state of the medium is described by scalar damage parameter, which affects on elastic and flow properties. The system of governing equations consists of fundamental mass, momentum and energy conservation laws and is closed by thermodynamically-consistent constitutive relations. Moreover, the energy expression takes into account its changing due to formation of damaged zones. The computational algorithm is based on the finite element method. The “monolithic” approach is used, which assumes that all groups of equations (mechanics, heat transfer and flow) are solved simultaneously without splitting on physical processes and / or iteration coupling between groups of equations. The model is approximated by a fully implicit scheme. Damage parameter evolution depending on the stress-strain state can be described within the framework of instant or finite-time kinetics. The paper briefly describes the mathematical model. The computational algorithm and its implementation features are described in detail. Significant part of the work is related to the application of the developed approaches for solving a number of model and realistic threedimensional problems. The main field of the model and algorithm application is the analysis of geomechanical problems of thermal enchanced oil recovery methods, which require a consistent description of the elastic, filtration and thermal fields dynamics coupled with medium damage evolution.
Keywords: thermoporoelasticity, Biot, damage, thermodynamic consistency, ColemanNoll procedure, finite element method.
@article{MM_2020_32_7_a3,
     author = {A. S. Meretin and E. B. Savenkov},
     title = {Simulation of thermoporoelastic medium with damage},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--76},
     publisher = {mathdoc},
     volume = {32},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_7_a3/}
}
TY  - JOUR
AU  - A. S. Meretin
AU  - E. B. Savenkov
TI  - Simulation of thermoporoelastic medium with damage
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 59
EP  - 76
VL  - 32
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_7_a3/
LA  - ru
ID  - MM_2020_32_7_a3
ER  - 
%0 Journal Article
%A A. S. Meretin
%A E. B. Savenkov
%T Simulation of thermoporoelastic medium with damage
%J Matematičeskoe modelirovanie
%D 2020
%P 59-76
%V 32
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_7_a3/
%G ru
%F MM_2020_32_7_a3
A. S. Meretin; E. B. Savenkov. Simulation of thermoporoelastic medium with damage. Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 59-76. http://geodesic.mathdoc.fr/item/MM_2020_32_7_a3/

[1] A. S. Meretin, E. B. Savenkov, “Matematicheskaya model filtratsionnikh processov v termo-porouprugoi srede s uchetom kontinualnogo razrusheniya”, Preprinty IPM im. M.V. Keldysha, 2019, 058, 38 pp.

[2] H. F. Wang, Theory of linear poroelasticity with applications to geomechanics and hydrogeology, Princeton University Press, Princeton, 2000

[3] S. C. Cowin, “Bone poroelasticity”, J. of Biomechanics, 32:3 (1999), 217–238 | MR

[4] A. Malandrino, E. Moeendarbary, “Poroelasticity of Living Tissues”, Encyclopedia of Biomedical Engineering, Elsevier, Amsterdam, 2017, 238–245

[5] V. Dorovsky, Yu. Perepechko, “Theory of partial melting”, Russian Geology and Geophysics, 30 (1989), 56–65

[6] V. Dorovsky, Yu. Perepechko, A. Fedorov, “The Stonely Waves in the Biot-Johnson Theory and Continuum Filtration Theory”, Russian Geology and Geophysics, 53 (2012), 621–630 | DOI | MR

[7] V. I. Golubev, A. V. Shevchenko, I. B. Petrov, “Taking into Account Fluid Saturation of Bottom Sediments in Marine Seismic Survey”, DAN, 488:3 (2019), 248–252 | Zbl

[8] L. W. Lake, Enhanced oil recovery, Prentice Hall, New York, 1989

[9] Yu. N. Rabotnov, “Mehanizm dlitelnogo razrusheniya”, Voposy prochnosti materialov i konstruktsii, AN SSSR, M., 1959, 5–7

[10] L. M. Kachanov, “O vremeni razrusheniya v usloviiach polzuchesti”, Izv. AN SSSR. OTN, 1958, no. 8, 26–31 | Zbl

[11] J. Kim, H. A. Tchelepi, R. Juanes. Stability, Accuracy and Efficiency of Sequential Methods for Coupled Flow and Geomechanics, SPE Paper No 119084, 2009 | MR

[12] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Elements Methods, Springer, 1991 | MR

[13] P. J. Phillips, M. F. Wheeler, “Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach”, Comp. Geosci., 13 (2009), 5–12 | DOI | Zbl

[14] C. Taylor, P. A. Hood, “A numerical solution of the Navier-Stokes equations using the finite element technique”, Computers and Fluids, 1:1 (1973), 73–100 | DOI | MR | Zbl

[15] R. E. Showalter, “Diffusion in Poro-Elastic Media”, J. of Math. Analysis and Applications, 251:1 (2000), 310–340 | DOI | MR | Zbl

[16] J. A. White, R. I. Borja, “Stabilized low-order finite elements for coupled solid deformation/fluid-diffusion and their application to fault zone transients”, Computer Methods in Applied Mechanics and Engineering, 97:49–50 (2008), 4353–4366 | DOI | MR

[17] J. Wan, Stabilized Finite Element Method for Coupled Geomechanics and Multiphase Flow, PhD Thesis, Stanford Univeristy, Stanford, 2002, 180 pp.

[18] K. Xia, A. Masud, Stabilized Finite Elements For Computational Geomechanics, ARMA/USRMS Paper No05-874, 2005

[19] J. Kim, Sequential methods for coupled geomechanics and multiphase flow, Stanford University, 2010, 248 pp.

[20] S. E. Minkoff, N. M. Kridler, “A comparison of adaptive time stepping methods for coupled flow and deformation modeling”, Applied math. modelling, 30:9 (2006), 993–1009 | DOI | MR | Zbl

[21] W. Voigt, Lehrbuch der kristallphysik, Teubner, Leipzig, 1928, 962 pp. | Zbl

[22] O. Zenkevich, Finite-element method in engineering, v. 5, Mir, M., 1975

[23] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, Dover, New York, 1972, 18 | MR

[24] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003 | MR | Zbl

[25] S. P. Neuman, “Saturated-unsaturated seepage by finite elements”, J. HYDRAUL. DIV., PROC., ASCE, 99 (1973), 2233–2250

[26] E. Cuthill, J. McKee, “Reducing the bandwidth of sparse symmetric matrices”, Proc. 24th Nat. Conf., ACM, 1969, 157–172

[27] A. S. Meretin, E. B. Savenkov, “Vychislitelnii algoritm dlya opisaniya evolutsii sredy s uchetom razrusheniya”, Preprinty IPM im. M.V. Keldysha, 2019, 082, 36 pp.

[28] C. A. Tang, “Coupled analysis of flow, stress and damage (FSD) in rock failure”, International J. of Rock Mechanics and Mining Sciences, 39:4 (2002), 477–489 | DOI

[29] H. D. Beggs, “Estimating the viscosity of crude oil systems”, Journal of Petroleum technology, 27:09 (1975), 1140–1141 | DOI

[30] J. Pogacnik, M. O'Sullivan, J. O'Sullivan, A Damage Mechanics Approach to Modeling Permeability Enhancement in Thermo-Hydro-Mechanical Simulations, 2014, 24–26