Cellular automaton based model of information warfare
Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 47-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers continuous models of information confrontation based on the traditional neurological scheme. Using the method of substituting differential equations by cellular automata we propose a discrete version of the information warfare model. This model is used to simulate a propaganda campaign by two parties and to carry out a number of computational experiments. It is shown that the macrodynamics of the new model corresponds to one of the original, while the discrete model has a wider range of applicability. For some problems of two-party confrontation results similar to those of the continuous model were obtained. The proposed discrete model allows a study o the problem of optimal single destabilization of the campaign. This study yielded with original results, such as existence of a critical value of the public opinion influence rate, which determines the period of time profitable for increasing the level of propaganda.
Keywords: mathematical modeling, cellular automata, information warfare.
Mots-clés : simulation
@article{MM_2020_32_7_a2,
     author = {M. E. Stepantsov},
     title = {Cellular automaton based model of information warfare},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {32},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_7_a2/}
}
TY  - JOUR
AU  - M. E. Stepantsov
TI  - Cellular automaton based model of information warfare
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 47
EP  - 58
VL  - 32
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_7_a2/
LA  - ru
ID  - MM_2020_32_7_a2
ER  - 
%0 Journal Article
%A M. E. Stepantsov
%T Cellular automaton based model of information warfare
%J Matematičeskoe modelirovanie
%D 2020
%P 47-58
%V 32
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_7_a2/
%G ru
%F MM_2020_32_7_a2
M. E. Stepantsov. Cellular automaton based model of information warfare. Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 47-58. http://geodesic.mathdoc.fr/item/MM_2020_32_7_a2/

[1] D. J. Daley, D. G. Kendall, “Stochastic rumors”, Journal of the Institute of Mathematics and its Applications, 1 (1964), 42–55 | DOI | MR

[2] D. P. Maki, M. Thompson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, NJ, USA, 1973 | MR

[3] Liang'an Huo, Peiqing Huang, Chun-Xiang Guo, “Analyzing the Dynamics of a Rumor Transmission Model with Incubation”, Discrete Dynamics in Nature and Society, 2012 (2012), 328151, 21 pp. | MR | Zbl

[4] R. Isea, R. Mayo-García, “Mathematical analysis of the spreading of a rumor among different subgroups of spreaders”, Pure and Applied Mathematics Letters, 2015 (2015), 50–54

[5] A. A. Samarskii, A. P. Mikhailov, Matematicheskoe modelirovanie. Idei, metody, primery, Fizmatlit, M., 1997, 320 pp. | MR

[6] A. P. Mikhailov, N. A. Marevtseva, “Models of information warfare”, MM, 4:3 (2012), 251–259 | Zbl

[7] A. P. Mikhailov, A. P. Petrov, “Osnovnye napravleniia matematicheskogo modelirovaniia informatsionnogo protivoborstva v sotsiume”, Predstavitelnaia vlast XXI vek, 2019, no. 5-6, 36–46

[8] A. P. Petrov, A. I. Maslov, N. A. Tsaplin, “Modeling position selection by individuals during information warfare in society”, MM, 8:4 (2016), 401–408 | MR | Zbl

[9] A. P. Petrov, S. A. Lebedev, “Online Political Flashmob: the Case of 632305222316434”, Computational mathematics and information technologies, 2019, no. 1, 17–28 | DOI | Zbl

[10] N. Rashevsky, Mathematical biophysics: physico-mathematical foundations of biology, Univ. of Chicago, Chicago Press, 1938 | MR

[11] O. G. Proncheva, A. P. Petrov, “Funktsiia otklika na propagandu v konsolidirovannykh i poliarizovannykh obshchestvakh”, Informatsionnye voiny, 2018, no. 3 (47), 50–53

[12] M. E. Stepantsov, “Simulation of the “Power-Society-Economics” System with Elements of Corruption Based on Cellular Automata”, MM, 10:2 (2018), 249–254 | MR | Zbl

[13] A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, “A Model of Information Warfare in a Society with a Piecewise Constant Function of the Destabilizing Impact”, MM, 11:2 (2019), 190–197 | DOI | MR