Cellular automaton based model of information warfare
Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 47-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers continuous models of information confrontation based on the traditional neurological scheme. Using the method of substituting differential equations by cellular automata we propose a discrete version of the information warfare model. This model is used to simulate a propaganda campaign by two parties and to carry out a number of computational experiments. It is shown that the macrodynamics of the new model corresponds to one of the original, while the discrete model has a wider range of applicability. For some problems of two-party confrontation results similar to those of the continuous model were obtained. The proposed discrete model allows a study o the problem of optimal single destabilization of the campaign. This study yielded with original results, such as existence of a critical value of the public opinion influence rate, which determines the period of time profitable for increasing the level of propaganda.
Keywords: mathematical modeling, cellular automata, information warfare.
Mots-clés : simulation
@article{MM_2020_32_7_a2,
     author = {M. E. Stepantsov},
     title = {Cellular automaton based model of information warfare},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--58},
     year = {2020},
     volume = {32},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_7_a2/}
}
TY  - JOUR
AU  - M. E. Stepantsov
TI  - Cellular automaton based model of information warfare
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 47
EP  - 58
VL  - 32
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_7_a2/
LA  - ru
ID  - MM_2020_32_7_a2
ER  - 
%0 Journal Article
%A M. E. Stepantsov
%T Cellular automaton based model of information warfare
%J Matematičeskoe modelirovanie
%D 2020
%P 47-58
%V 32
%N 7
%U http://geodesic.mathdoc.fr/item/MM_2020_32_7_a2/
%G ru
%F MM_2020_32_7_a2
M. E. Stepantsov. Cellular automaton based model of information warfare. Matematičeskoe modelirovanie, Tome 32 (2020) no. 7, pp. 47-58. http://geodesic.mathdoc.fr/item/MM_2020_32_7_a2/

[1] D. J. Daley, D. G. Kendall, “Stochastic rumors”, Journal of the Institute of Mathematics and its Applications, 1 (1964), 42–55 | DOI | MR

[2] D. P. Maki, M. Thompson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, NJ, USA, 1973 | MR

[3] Liang'an Huo, Peiqing Huang, Chun-Xiang Guo, “Analyzing the Dynamics of a Rumor Transmission Model with Incubation”, Discrete Dynamics in Nature and Society, 2012 (2012), 328151, 21 pp. | MR | Zbl

[4] R. Isea, R. Mayo-García, “Mathematical analysis of the spreading of a rumor among different subgroups of spreaders”, Pure and Applied Mathematics Letters, 2015 (2015), 50–54

[5] A. A. Samarskii, A. P. Mikhailov, Matematicheskoe modelirovanie. Idei, metody, primery, Fizmatlit, M., 1997, 320 pp. | MR

[6] A. P. Mikhailov, N. A. Marevtseva, “Models of information warfare”, MM, 4:3 (2012), 251–259 | Zbl

[7] A. P. Mikhailov, A. P. Petrov, “Osnovnye napravleniia matematicheskogo modelirovaniia informatsionnogo protivoborstva v sotsiume”, Predstavitelnaia vlast XXI vek, 2019, no. 5-6, 36–46

[8] A. P. Petrov, A. I. Maslov, N. A. Tsaplin, “Modeling position selection by individuals during information warfare in society”, MM, 8:4 (2016), 401–408 | MR | Zbl

[9] A. P. Petrov, S. A. Lebedev, “Online Political Flashmob: the Case of 632305222316434”, Computational mathematics and information technologies, 2019, no. 1, 17–28 | DOI | Zbl

[10] N. Rashevsky, Mathematical biophysics: physico-mathematical foundations of biology, Univ. of Chicago, Chicago Press, 1938 | MR

[11] O. G. Proncheva, A. P. Petrov, “Funktsiia otklika na propagandu v konsolidirovannykh i poliarizovannykh obshchestvakh”, Informatsionnye voiny, 2018, no. 3 (47), 50–53

[12] M. E. Stepantsov, “Simulation of the “Power-Society-Economics” System with Elements of Corruption Based on Cellular Automata”, MM, 10:2 (2018), 249–254 | MR | Zbl

[13] A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, “A Model of Information Warfare in a Society with a Piecewise Constant Function of the Destabilizing Impact”, MM, 11:2 (2019), 190–197 | DOI | MR