Parallel algorithm for flow simulation in rotor-stator systems based on edge-bases schemes
Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 127-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a numerical algorithm for gas dynamics simulation in rotor–stator systems based on sliding meshes and edge-based schemes. Multilevel MPI+OpenMP parallelization for cluster systems is described in detail. Parallel efficiency has been demonstrated on up to 1400 cores, as well as on Intel Xeon Phi accelerators. The scheme is verified by solving acoustic problems. Robustness of the algorithm is demonstrated on simulation of a model ventilator.
Keywords: edge-based scheme, unstructured mesh, rotor–stator, MPI, OpenMP.
@article{MM_2020_32_6_a8,
     author = {I. V. Abalakin and P. A. Bakhvalov and V. G. Bobkov and A. V. Gorobets},
     title = {Parallel algorithm for flow simulation in rotor-stator systems based on edge-bases schemes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a8/}
}
TY  - JOUR
AU  - I. V. Abalakin
AU  - P. A. Bakhvalov
AU  - V. G. Bobkov
AU  - A. V. Gorobets
TI  - Parallel algorithm for flow simulation in rotor-stator systems based on edge-bases schemes
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 127
EP  - 140
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a8/
LA  - ru
ID  - MM_2020_32_6_a8
ER  - 
%0 Journal Article
%A I. V. Abalakin
%A P. A. Bakhvalov
%A V. G. Bobkov
%A A. V. Gorobets
%T Parallel algorithm for flow simulation in rotor-stator systems based on edge-bases schemes
%J Matematičeskoe modelirovanie
%D 2020
%P 127-140
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_6_a8/
%G ru
%F MM_2020_32_6_a8
I. V. Abalakin; P. A. Bakhvalov; V. G. Bobkov; A. V. Gorobets. Parallel algorithm for flow simulation in rotor-stator systems based on edge-bases schemes. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 127-140. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a8/

[1] I. V. Abalakin, V. A. Anikin, P. A. Bakhvalov, V. G. Bobkov, T. K. Kozubskaya, “Numerical simulation of aerodynamic and acoustic characteristics of a ducted rotor”, Math. Mod. and Comp. Simul., 8:3 (2016), 309–324 | DOI | MR | Zbl

[2] B. Koobus, C. Farhat, “Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes”, Comp. Methods Appl. Mech. Eng., 170 (1999), 103–129 | DOI | MR | Zbl

[3] T. J. Barth, Numerical aspects of computing high Reynolds number flows on unstructured meshes, AIAA Paper No 91-0721

[4] A. Katz, V. Sankaran, “An efficient correction method to obtain a formally third-order accurate flow solver for node-centered unstructured grids”, J. Sci. Comp., 51:2 (2012), 375–393 | DOI | MR | Zbl

[5] B. Pincock, A. Katz, “High-orderux correction for viscous flows on arbitrary unstructured grids”, J. Sci. Comp., 61:2 (2014), 454–476 | DOI | MR | Zbl

[6] P. Bakhvalov, T. Kozubskaya, “Modification of Flux Correction method for accuracy improvement on unsteady problems”, J. Comp. Phys., 338 (2017), 199–216 | DOI | MR | Zbl

[7] C. Debiez, A. Dervieux, “Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteadyow calculations”, Computers and Fluids, 29:1 (2000), 89–118 | DOI | MR | Zbl

[8] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. for numerical methods in fluids, 81:6 (2016), 331–356 | DOI | MR

[9] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comp. Fluids, 157 (2017), 312–324 | DOI | MR | Zbl

[10] M. A. Burgos, J. Contreras, R. Corral, “Efficient Edge-Based Rotor/Stator Interaction Method”, AIAA Journal, 49:1 (2011), 19–31 | DOI

[11] V. A. Titarev, G. A. Faranosov, S. A. Chernyshev, A. S. Batrakov, “Numerical Modeling of the Influence of the Relative Positions of a Propeller and Pylon on Turboprop Aircraft Noise”, Acoustical physics, 64:6 (2018), 760–773 | DOI | DOI

[12] T. J. Barth, A 3-D upwind Euler solver for unstructured meshes, AIAA Paper No 91-1548

[13] P. Bakhvalov, T. Kozubskaya, “Construction of Edge-Based 1-Exact Schemes for Solving the Euler Equations on Hybrid Unstructured Meshes”, Comp. Math. Math. Phys., 57:4 (2017), 680–697 | DOI | MR | Zbl

[14] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes”, Journal of Computational Physics, 43:2 (1981), 357–372 | DOI | MR | Zbl

[15] E. Turkel, “Preconditioning Techniques in Computational Fluid Dynamics”, Annual Review of Fluid Mechanics, 31 (1999), 385–416 | DOI | MR

[16] P. A. Bakhvalov, “Modelirovanie techeniia v sistemah rotor-stator s osesimmetrichnym statorom reberno-orientirovannymi shemami”, Keldysh Institute preprints, 2018, 124, 16 pp.

[17] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaia, “Parallelnyi programmnyi kompleks NOISEtte dlia krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vych. metody i programm., 13 (2012), 110–125

[18] A. Gorobets, “Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations”, Lobachevskii J. of Math., 39:4 (2018), 524–532 | DOI | MR | Zbl

[19] H. A. van der Vorst, “A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems”, SIAM J. on Scientific and Statistical Comp., 13:2 (1992), 631–644 | DOI | MR | Zbl

[20] P. A. Bakhvalov, A. V. Gorobets, “K voprosu ob effektivnoi parallelnoi realizatsii vershinno-tesntrirovannyh shem na skol'ziatschih setkah”, Keldysh Institute preprints, 2018, 277, 16 pp. | DOI