Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_6_a7, author = {A. S. Barashkov}, title = {Remote determination of parameters of powerful layers with the use of the intermediate model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {111--126}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a7/} }
TY - JOUR AU - A. S. Barashkov TI - Remote determination of parameters of powerful layers with the use of the intermediate model JO - Matematičeskoe modelirovanie PY - 2020 SP - 111 EP - 126 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a7/ LA - ru ID - MM_2020_32_6_a7 ER -
A. S. Barashkov. Remote determination of parameters of powerful layers with the use of the intermediate model. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 111-126. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a7/
[1] Ming Li, Chuchu Chen, Li Peijun, “Inverse random source scattering for the Helmholtz equation in inhomogeneous media”, Inverse Problems, 34 (2017), 015003 | MR
[2] P. S. Martyshko, A. L. Rublev, “O reshenii trekhmernoi obratnoi zadachi dlia uravneniia Gelmgoltsa”, Rossiiskii geofizicheskii zhurnal, 1999, no. 13-14, 98–110
[3] A. S. Barashkov, A. A. Nebera, “Cases of uniform convergence of the iteratively asymptotic method for solving multidimensional inverse problems”, Differential Equations, 51:4 (2015), 558–562 | DOI | DOI | MR | MR | Zbl
[4] A. V. Goncharsky, S. Yu. Romanov, S. A. Kharchenko, “Obratnaia zadacha akusticheskoi diagnostiki trekhmernykh sred”, Vych. metody i programmer, 7:1 (2006), 117–126
[5] Deyue Zhang, Yukun Guo, “Fourier method for solving the multi-frequency inverse source problem for the Helmholtz equation”, Inverse Problems, 31 (2015), 035007 | DOI | MR | Zbl
[6] A.S. Ayriyan, E.A. Ayryan, A.A. Egorov, I.A. Maslyanitsyn, V.D. Shigorin, “Numerical Modeling of the Static Electric Field Effect on the Director of the Nematic Liquid Crystal Director”, Mathematical Models and Computer Simulations, 10:4 (2018), 714–720 | DOI | MR
[7] A. V. Baev, “On Resolving Inverse Nonstationary Scattering Problems in a Two-Dimensional Homogeneous Layered Medium by the $\tau-p$ Radon Transform”, Mathematical Models and Computer Simulations, 10:5 (2018), 659–669 | DOI | MR | Zbl
[8] A. I. Khiryanova, S. I. Tkachenko, “Vosstanovlenie impulsa toka po napriazhennosti elektricheskogo polia, izmerennoi na vnutrennei poverkhnosti trubki”, Matem. Mod., 29:5 (2017), 3–15 | MR | Zbl
[9] E. P. Shurina, B. V. Rak, P. S. Zhigalov, “Analiz effektivnosti primeneniia PML-sloia v nizkochastotnykh prilozheniiakh (morskaia geoelektrika)”, Matem. Modelirovanie, 29:2 (2017), 33–46 | MR | Zbl
[10] M. V. Klibanov, V. G. Romanov, “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation”, Inverse Problems, 32:2 (2016), 015005 | DOI | MR | Zbl
[11] M. N. Berdichevsky, V. I. Dmitriev, Modeli i metody magnitotelluriki, Nauchnyi Mir, M., 2009, 680 pp.
[12] A. N. Tikhonov, “Mathematical basis of the theory of electromagnetic soundings”, USSR Computational Mathematics and Mathematical Physics, 5:3 (1965), 545–548
[13] A. S. Barashkov, Small Parameter Method in Multidimensional Inverse Problems, VSP, Utrecht, The Netherlands, 1998, 139 pp. | MR | Zbl
[14] A. S. Barashkov, “Asymptotic forms of the solution of inverse problems for the Helmholtz equation”, USSR Comp. Math. and Math. Physics, 28:12 (1988), 1823–1831 | MR | Zbl
[15] V. G. Romanov, Nekotorye obratnye zadachi dlia uravnenii giperbolicheskogo tipa, Nauka, Novosibirsk, 1972, 164 pp.
[16] I. A. Shishmaryov, Vvedenie v teoriiu ellipticheskikh uravnenii, Izd-vo MGU, M., 1979, 184 pp.
[17] L. E. Elsgolts, Differentsialnye uravneniia i variatsionnoe ischislenie, Nauka, M., 1969, 424 pp.
[18] S. Bochner, Lektsii ob integralakh Fure, Gos. izd-vo fiz. mat. Lit., M., 1962, 360 pp.
[19] A. S. Barashkov, “On the Feasibility of Detecting Thin Conductive Layers from Field Measurements on the Surface of a Medium”, Comp. Math. and Math. Phys., 58:12 (2018), 2043–2052 | DOI | MR | Zbl
[20] V. S. Vladimirov, Obobshchennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp.
[21] A. S. Barashkov, Matematika. Vysshee obrazovanie, AST, M., 2011, 480 pp.