On comparison of solutions at verification
Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 97-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The impact of a proximity measure on the comparison of the numerical and etalon solutions is addressed from the viewpoint of the verification of solutions and codes. The deterministic and stochastic options for the estimation of the discretization error are considered via the ensemble of numerical solutions obtained by different schemes if etalon solutions are not available. The relation of the solution error norm and the valuable functional errors is studied via Cauchy–Bunyakovsky–Schwarz inequality. The results of the numerical tests are provided for the two-dimensional Euler equations and demonstrate the impact of proximity measure on the error estimation by the ensemble of solutions and the efficiency of considered algorithms. The comparison of different proximity measure choice (norms and metrics) for the estimation of the discretization error and for the comparison of flowfields corresponding to both the small flow structure variations and qualitatively different flow patterns is the new element of the paper. The application the valuable functional error for treating the approximation errors is also novel. The feasibility for computationally cheap (single grid, in contrast to the Richardson extrapolation) quantitative verification of solutions and codes considered and demonstrated in the paper may be useful at application of the Russian Federation standards concerning CFD codes and solutions verification.
Keywords: verification, finite-difference schemes
Mots-clés : ensemble of solutions.
@article{MM_2020_32_6_a6,
     author = {A. K. Alekseev and A. E. Bondarev},
     title = {On comparison of solutions at verification},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--110},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a6/}
}
TY  - JOUR
AU  - A. K. Alekseev
AU  - A. E. Bondarev
TI  - On comparison of solutions at verification
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 97
EP  - 110
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a6/
LA  - ru
ID  - MM_2020_32_6_a6
ER  - 
%0 Journal Article
%A A. K. Alekseev
%A A. E. Bondarev
%T On comparison of solutions at verification
%J Matematičeskoe modelirovanie
%D 2020
%P 97-110
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_6_a6/
%G ru
%F MM_2020_32_6_a6
A. K. Alekseev; A. E. Bondarev. On comparison of solutions at verification. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 97-110. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a6/

[1] GOST R 57700.12-2018. Chislennoe modelirovanie sverkhzvukovykh techenii neviazkogo gaza. Verifikatsiia PO/Natsionalnyi standart RF po chislennomu modelirovaniiu fizicheskikh protsessov, 2018, 20 pp.

[2] A. L. Zhelezniakova, “Tekhnologii verifikatsii i validatsii v chislennom gazodinamicheskom modelirovanii”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 19:2 (2018)

[3] O. A. Kovyrkina, V. V. Ostapenko, “O realnoy tochnosti raznostnyh shem skvoznogo scheta”, Matematicheskoe modelirovanie, 25:9 (2013), 63–74 | Zbl

[4] Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, AIAA-G-077-1998, American Inst. of Aeronautics and Astronautics, Reston, VA, 1998

[5] Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, ASME V 20-2009

[6] A. K. Alexeev, A. E. Bondarev, “On Some Features of Richardson Extrapolation for Compressible Inviscid Flows”, Mathematica Montisnigri, XL (2017), 42–54 | MR

[7] A. K. Alekseev, A. E. Bondarev, I. M. Navon, On Triangle Inequality Based Approximation Error Estimation, 2017, arXiv: 1708.04604

[8] A. K. Alekseev, A. E. Bondarev, “Estimation of the Distance between True and Numerical Solutions”, Computational mathematics and mathematical physics, 59:6 (2019), 857–863 | DOI | MR | Zbl

[9] P. Ch. Mahalanobis, “On the generalized distance in statistics”, Proceedings of the National Institute of Sciences of India, 2:1 (1936), 49–55 | MR | Zbl

[10] L. Wang, Y. Zhang, J. Feng, “On the Euclidean Distance of Images”, IIEE Transactions on Pattern Analysis and Machine Intelligence, 27:8 (2005), 1334–1339 | DOI

[11] B. Edney, “Effects of Shock Impingement on the Heat Transfer around Blunt Bodies”, AIAA J., 6:1 (1968), 15–21 | DOI

[12] H. W. Liepmann, A. Roshko, Elements of gas dynamics, John Wiley, Inc., New York, 1957, 389 pp. | MR

[13] V. A. Zorich, “Multidimensional Geometry, Functions of Very Many Variables, and Probability”, Theory Probab. Appl., 59:3 (2014), 481–493 | DOI | DOI | MR

[14] P. Sidiropoulos, N-sphere chord length distribution, 2014, arXiv: 1411.5639v1

[15] V. V. Viugin, Kolmogorov complexity and algorithmic randomness, MIPT, M., 2012, 132 pp.

[16] S. I. Repin, A posteriori estimates for partial differential equations, v. 4, Walter de Gruyter, 2008, 193 pp. | MR

[17] R. Courant, E. Isaacson, V. Rees, “On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences”, Comm. Pure Appl. Math., 5 (1952), 243–255 | DOI | MR | Zbl

[18] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall/CRC, FL., 1999, 540 pp. | MR | MR

[19] B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | Zbl

[20] M. Sun, K. Katayama, “An artificially upstream flux vector splitting for the Euler equations”, JCP, 189 (2003), 305–329 | MR | Zbl

[21] S. Osher, S. Chakravarthy, Very high order accurate TVD schemes, ICASE Report No 84-144, 1984, 229–274 | MR

[22] S. Yamamoto, H. Daiguji, “Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations”, Computers and Fluids, 22 (1993), 259–270 | DOI | MR | Zbl

[23] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 2009, 738 pp. | MR | Zbl