Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_6_a6, author = {A. K. Alekseev and A. E. Bondarev}, title = {On comparison of solutions at verification}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {97--110}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a6/} }
A. K. Alekseev; A. E. Bondarev. On comparison of solutions at verification. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 97-110. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a6/
[1] GOST R 57700.12-2018. Chislennoe modelirovanie sverkhzvukovykh techenii neviazkogo gaza. Verifikatsiia PO/Natsionalnyi standart RF po chislennomu modelirovaniiu fizicheskikh protsessov, 2018, 20 pp.
[2] A. L. Zhelezniakova, “Tekhnologii verifikatsii i validatsii v chislennom gazodinamicheskom modelirovanii”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 19:2 (2018)
[3] O. A. Kovyrkina, V. V. Ostapenko, “O realnoy tochnosti raznostnyh shem skvoznogo scheta”, Matematicheskoe modelirovanie, 25:9 (2013), 63–74 | Zbl
[4] Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, AIAA-G-077-1998, American Inst. of Aeronautics and Astronautics, Reston, VA, 1998
[5] Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, ASME V 20-2009
[6] A. K. Alexeev, A. E. Bondarev, “On Some Features of Richardson Extrapolation for Compressible Inviscid Flows”, Mathematica Montisnigri, XL (2017), 42–54 | MR
[7] A. K. Alekseev, A. E. Bondarev, I. M. Navon, On Triangle Inequality Based Approximation Error Estimation, 2017, arXiv: 1708.04604
[8] A. K. Alekseev, A. E. Bondarev, “Estimation of the Distance between True and Numerical Solutions”, Computational mathematics and mathematical physics, 59:6 (2019), 857–863 | DOI | MR | Zbl
[9] P. Ch. Mahalanobis, “On the generalized distance in statistics”, Proceedings of the National Institute of Sciences of India, 2:1 (1936), 49–55 | MR | Zbl
[10] L. Wang, Y. Zhang, J. Feng, “On the Euclidean Distance of Images”, IIEE Transactions on Pattern Analysis and Machine Intelligence, 27:8 (2005), 1334–1339 | DOI
[11] B. Edney, “Effects of Shock Impingement on the Heat Transfer around Blunt Bodies”, AIAA J., 6:1 (1968), 15–21 | DOI
[12] H. W. Liepmann, A. Roshko, Elements of gas dynamics, John Wiley, Inc., New York, 1957, 389 pp. | MR
[13] V. A. Zorich, “Multidimensional Geometry, Functions of Very Many Variables, and Probability”, Theory Probab. Appl., 59:3 (2014), 481–493 | DOI | DOI | MR
[14] P. Sidiropoulos, N-sphere chord length distribution, 2014, arXiv: 1411.5639v1
[15] V. V. Viugin, Kolmogorov complexity and algorithmic randomness, MIPT, M., 2012, 132 pp.
[16] S. I. Repin, A posteriori estimates for partial differential equations, v. 4, Walter de Gruyter, 2008, 193 pp. | MR
[17] R. Courant, E. Isaacson, V. Rees, “On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences”, Comm. Pure Appl. Math., 5 (1952), 243–255 | DOI | MR | Zbl
[18] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall/CRC, FL., 1999, 540 pp. | MR | MR
[19] B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | Zbl
[20] M. Sun, K. Katayama, “An artificially upstream flux vector splitting for the Euler equations”, JCP, 189 (2003), 305–329 | MR | Zbl
[21] S. Osher, S. Chakravarthy, Very high order accurate TVD schemes, ICASE Report No 84-144, 1984, 229–274 | MR
[22] S. Yamamoto, H. Daiguji, “Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations”, Computers and Fluids, 22 (1993), 259–270 | DOI | MR | Zbl
[23] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 2009, 738 pp. | MR | Zbl