Discrete-dynamic modeling of governance for human capital
Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 81-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the problem of multi-criteria optimization of the state regulation of the quality of human capital in the information society. It describes human capital's dynamic by discrete model, taking into account the age dynamics of awareness and cognitive abilities of the individual as a carrier of information. Lifelong indices of human capital are constructed on the trajectories of human’s productivity and creativity, taking into account the increase in the quality of human capital in youth, and further, its decline in older age. The problem of state regulation is described as a bicriteria maximization of two population’s mathematical expectations of indices for the generation, taking into account not only the natural distribution of indices by starting values, but also the possibilities of socialization in the state-controlled education system. The identification of the model is based on the known population constraints on the phase tube of trajectories. The model is identified and researched by methods using approximation by Shannon’s metric nets. It is shown that the optimal choice of educational priorities by the state depends on the parameters of society: age mortality rates and the budget of time available for socialization of non-adults. There are combinations of parameters that lead to conflict of control criteria, so the solution is a set of Pareto-optimal strategies. For Russia, there is a dominant solution that prioritizes the development of cognitive abilities rather than awareness.
Keywords: human capital, cognitive abilities, socialization, education governance, information society, discrete dynamical model, multicriteria optimization, metric data analysis, Pareto-optimality, phase tube.
@article{MM_2020_32_6_a5,
     author = {G. K. Kamenev and I. G. Kamenev},
     title = {Discrete-dynamic modeling of governance for human capital},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--96},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a5/}
}
TY  - JOUR
AU  - G. K. Kamenev
AU  - I. G. Kamenev
TI  - Discrete-dynamic modeling of governance for human capital
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 81
EP  - 96
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a5/
LA  - ru
ID  - MM_2020_32_6_a5
ER  - 
%0 Journal Article
%A G. K. Kamenev
%A I. G. Kamenev
%T Discrete-dynamic modeling of governance for human capital
%J Matematičeskoe modelirovanie
%D 2020
%P 81-96
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_6_a5/
%G ru
%F MM_2020_32_6_a5
G. K. Kamenev; I. G. Kamenev. Discrete-dynamic modeling of governance for human capital. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 81-96. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a5/

[1] G. Becker, Human capital: theoretical and empirical analysis, with special reference to education, N.Y, 1964

[2] J. E. Hunter, “Cognitive ability, cognitive aptitudes, job knowledge, and job performance”, Journal of vocational behavior, 29:3 (1986), 340–362 | DOI

[3] G. K. Kamenev, I. G. Kamenev, “Primenenie metodov mnogomernogo analiza dlya izucheniya sociologicheskih sovokupnostej”, Trudy otdela matematicheskogo modelirovaniya ekonomicheskih sistem VC FIC IU RAN, FIC IU RAN, M., 2017, 58–93

[4] G. K. Kamenev, “Kalibrovka dinamicheskih modelej s usloviyami na trubku traektorij”, Trudy IX Moskovskoj mezhd. konf. po issledovaniyu operacij, ORM2018, v. 2, MAKS Press, M., 2018, 360–364

[5] G. K. Kamenev, I. G. Kamenev, “The model of human as information carrier and its metric data analysis”, Conf. proc. of VII Intern. Conf. «New trends, strategies and structural changes in emerging markets», 67–69 | DOI

[6] A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, Interactive Decision Maps. Approximation and Visualization of Pareto Frontier, Appl. Optim., 89, Kluwer Acad. Publ., Boston–Dordrecht–New York–London, 2004, 310 pp. | DOI | MR | Zbl

[7] C. Shannon, “The Mathematical Theory of Communication”, The Bell System Technical Journal, 27, July (1948), 379–423 ; October, 623–656 | DOI | MR | Zbl

[8] G. K. Kamenev, “Approximation of Completely Bounded Sets by the Deep Holes Method”, Comp. Math. Math. Phys., 41:11 (2001), 1667–1675 | MR | Zbl

[9] G. K. Kamenev, “A Multicriteria Method for Identification and Forecasting”, Math. Mod. Comp. Simul., 10:2 (2018), 154–163 | DOI | MR

[10] T. A. Salthouse, “Within-Cohort Age-Related Differences in Cognitive Functioning”, Psychological Science, 24:2 (2013), 123–130 | DOI

[11] Zdravoohranenie v Rossii, Stat. sb., Rosstat, M., 2017