Mathematical model for soot formation under toluol diffusion combustion
Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 66-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to mathematical modeling of soot particles formation and particles growth under diffusion combustion of hydrocarbon fuel is presented. The chain of transitions for hydrocarbon fuel is described with Markov process with finite number of states. The stiff system of Kolmogorov ordinary differential equations (ODEs) models the Markov process. Obtained numerical solution describes the soot fractions concentrations in the diffusion flame. Discrete distribution of soot fractions concentrations at different moments is constructed. Least square method is used to approximate discrete distributions with Weibull distribution. Obtained results are in good compliance with experimental data.
Mots-clés : hydrocarbon fuel, diffusion flame
Keywords: dispersed carbon (soot), soot formations, Kolmogorov equations, stiff systems, Rosenbrock methods.
@article{MM_2020_32_6_a4,
     author = {M. P. Galanin and A. V. Isaev and S. A. Konev},
     title = {Mathematical model for soot formation under toluol diffusion combustion},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {66--80},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a4/}
}
TY  - JOUR
AU  - M. P. Galanin
AU  - A. V. Isaev
AU  - S. A. Konev
TI  - Mathematical model for soot formation under toluol diffusion combustion
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 66
EP  - 80
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a4/
LA  - ru
ID  - MM_2020_32_6_a4
ER  - 
%0 Journal Article
%A M. P. Galanin
%A A. V. Isaev
%A S. A. Konev
%T Mathematical model for soot formation under toluol diffusion combustion
%J Matematičeskoe modelirovanie
%D 2020
%P 66-80
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_6_a4/
%G ru
%F MM_2020_32_6_a4
M. P. Galanin; A. V. Isaev; S. A. Konev. Mathematical model for soot formation under toluol diffusion combustion. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 66-80. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a4/

[1] M. Faraday, The Chemical History of a Candle, Chatto Windus, London, 1908, 226 pp.

[2] A. D. Kokurin, V. N. Vinogradov, Diffusionnoe plamia v tekhnologicheskikh processakh, LDNTP, L., 1984, 19 pp.

[3] A.G. Gaydon, H.G. Wolfgard, Flames — Their Structure, Radiation and Temperature, Chapman and Hall, London, 1970, xiii+401 pp.

[4] A. V. Isaev, “Vyiavlenie zakonomernostei obrazovania i gazifikatsii dispresnogo ugleroda putem issledovania protsessov gorenia uglevodorodnykh topliv v raslichnykh usloviakh”, II Mezhdun. nauchno-tekhnichesk. konfer. «Aviadvigateli XXI veka», 2005, CIAM, M.

[5] A. V. Isaev, “Vyiavlenie zakonomernostei processov gorenia uglevodorodnykh topliv putem kompleksnogo issledovania laminarnykh diffusionnykh plamen”, Neftepererabotka and neftekhimia, 1995, no. 4, 14–18

[6] E. S. Ventsel', L. A. Ovcharov, Teoria sluchainykh processov i ee inzhenernye prilozhenia, Vysh. shk., 2000, 383 pp.

[7] A. P. Kirpichnikov, Metody prikladnoi teorii massovogo obsluzhivania, Editorial URSS, M., 2017, 224 pp.

[8] M. P. Galanin, A. V. Isaev, S. A. Konev, “O modelirovanii obrazovania sazhi pri diffusionnom gorenii uglevodorodnykh topliv”, Keldysh Institute preprints, 2019, 110, 32 pp.

[9] A.D Kotov, G. S. Mironov, V. Iu. Orlov, A. I. Ruskov, Organicheskaia khimia, ucheb. posobie, IarGU, Iaroslavl, 2007, 216 pp.

[10] V.A. Zavialov, A.V. Isaev, M.E. Reznikov, S.V. Shishaev (RF), Sposob otsenki sklonnosti uglevodorodnogo topliva k sazheobrazovaniu pri gorenii, Parent na izobretenie No 2199737 ot 27 fevralia 2003 g.

[11] S. V. Shishaev, “Otsenka sklonoosti topliv k sazheobrazovaniu i dymleniu pri gorenii. Novyi laboratornyi metod”, Khimia i tekhnologia topliv i masel, 2002, no. 3, 50–52

[12] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer, Berlin, 2010, 614 pp. | MR | Zbl

[13] D. S. Guzhev, N. N. Kalitkin, “Optimalnaia skhema dlia paketa ROS4”, Matem. modelir., 6:11 (1994), 128–138 | MR | Zbl

[14] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer, Berlin, 1993, 528 pp. | MR | Zbl