Pattern formation in reaction-diffusion system with time-fractional derivatives
Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper possible scenarios of pattern formation in non-linear media with diffusion and differential operators of non-integer order are studied for the abstract Brusselator model. By means of the standard linear analysis exact critical values for different types of instabilities are derived. It is shown that stability criteria significantly depend on the order of the fractional derivative in case of the Hopf and C2TH bifurcations. Predictions of the linear theory are confirmed by numerical simulation.
Mots-clés : fractional calculus
Keywords: reaction-diffusion systems.
@article{MM_2020_32_6_a3,
     author = {D. A. Zenyuk and G. G. Malinetsky},
     title = {Pattern formation in reaction-diffusion system with time-fractional derivatives},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a3/}
}
TY  - JOUR
AU  - D. A. Zenyuk
AU  - G. G. Malinetsky
TI  - Pattern formation in reaction-diffusion system with time-fractional derivatives
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 53
EP  - 65
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a3/
LA  - ru
ID  - MM_2020_32_6_a3
ER  - 
%0 Journal Article
%A D. A. Zenyuk
%A G. G. Malinetsky
%T Pattern formation in reaction-diffusion system with time-fractional derivatives
%J Matematičeskoe modelirovanie
%D 2020
%P 53-65
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_6_a3/
%G ru
%F MM_2020_32_6_a3
D. A. Zenyuk; G. G. Malinetsky. Pattern formation in reaction-diffusion system with time-fractional derivatives. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 53-65. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a3/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon Breach Science publishers, Yverdon, 1993, 1012 pp. | MR | Zbl

[2] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010, 347 pp. | MR

[3] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Physics reports, 339:1 (2000), 1–77 | DOI | MR | Zbl

[4] L. M. Zelenyi, A. V. Milovanov, “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics”, Physics-Uspekhi, 47:8 (2004), 749 | DOI

[5] M. F. Shlesinger, G. M. Zaslavsky, J. Klafter, “Strange kinetics”, Nature, 363:6424 (1993), 13–37 | DOI

[6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006, 541 pp. | MR | Zbl

[7] R. Gorenflo et al, Mittag-Leffler functions, related topics and applications, Springer, Berlin, 2014, 441 pp. | MR | Zbl

[8] D. A. Zeniuk, G. G. Malinetskii, “Odnomernyi briusseliator s drobnymi proizvodnymi po vremeni”, Preprinty IPM im. M.V. Keldysha, 2019, 098, 32 pp.

[9] T. A.M. Langlands, B. I. Henry, S. L. Wearne, “Turing pattern formation with fractional diffu-sion and fractional reactions”, J. of Physics: Condensed Matter, 19:6 (2007), 065115 | DOI | MR

[10] G. Nicolis, I. Prigogine, Self-organization in nonequilibrium systems, J. Wiley Sons, NY, 1977, 512 pp. | MR | Zbl

[11] A. De Wit, “Spatial patterns and spatiotemporal dynamics in chemical systems”, Advances in Chemical Physics, 109 (1999), 435–514

[12] A. De Wit et al, “Spatiotemporal dynamics near a codimension-two point”, Physical Review E, 54:1 (1996), 261 | DOI

[13] C. P. Li, F. R. Zhang, “A survey on the stability of fractional differential equations”, The European Physical Journal Special Topics, 193:1 (2011), 27–47 | DOI | MR

[14] R. Garrappa, “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, 6:2 (2018), 16 | DOI | MR | Zbl

[15] B. I. Henry, T. A.M. Langlands, S. L. Wearne, “Turing pattern formation in fractional activator-inhibitor systems”, Physical Review E, 72:2 (2005), 026101 | DOI | MR