Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_6_a3, author = {D. A. Zenyuk and G. G. Malinetsky}, title = {Pattern formation in reaction-diffusion system with time-fractional derivatives}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {53--65}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a3/} }
TY - JOUR AU - D. A. Zenyuk AU - G. G. Malinetsky TI - Pattern formation in reaction-diffusion system with time-fractional derivatives JO - Matematičeskoe modelirovanie PY - 2020 SP - 53 EP - 65 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a3/ LA - ru ID - MM_2020_32_6_a3 ER -
D. A. Zenyuk; G. G. Malinetsky. Pattern formation in reaction-diffusion system with time-fractional derivatives. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 53-65. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a3/
[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon Breach Science publishers, Yverdon, 1993, 1012 pp. | MR | Zbl
[2] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010, 347 pp. | MR
[3] R. Metzler, J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Physics reports, 339:1 (2000), 1–77 | DOI | MR | Zbl
[4] L. M. Zelenyi, A. V. Milovanov, “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics”, Physics-Uspekhi, 47:8 (2004), 749 | DOI
[5] M. F. Shlesinger, G. M. Zaslavsky, J. Klafter, “Strange kinetics”, Nature, 363:6424 (1993), 13–37 | DOI
[6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006, 541 pp. | MR | Zbl
[7] R. Gorenflo et al, Mittag-Leffler functions, related topics and applications, Springer, Berlin, 2014, 441 pp. | MR | Zbl
[8] D. A. Zeniuk, G. G. Malinetskii, “Odnomernyi briusseliator s drobnymi proizvodnymi po vremeni”, Preprinty IPM im. M.V. Keldysha, 2019, 098, 32 pp.
[9] T. A.M. Langlands, B. I. Henry, S. L. Wearne, “Turing pattern formation with fractional diffu-sion and fractional reactions”, J. of Physics: Condensed Matter, 19:6 (2007), 065115 | DOI | MR
[10] G. Nicolis, I. Prigogine, Self-organization in nonequilibrium systems, J. Wiley Sons, NY, 1977, 512 pp. | MR | Zbl
[11] A. De Wit, “Spatial patterns and spatiotemporal dynamics in chemical systems”, Advances in Chemical Physics, 109 (1999), 435–514
[12] A. De Wit et al, “Spatiotemporal dynamics near a codimension-two point”, Physical Review E, 54:1 (1996), 261 | DOI
[13] C. P. Li, F. R. Zhang, “A survey on the stability of fractional differential equations”, The European Physical Journal Special Topics, 193:1 (2011), 27–47 | DOI | MR
[14] R. Garrappa, “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, 6:2 (2018), 16 | DOI | MR | Zbl
[15] B. I. Henry, T. A.M. Langlands, S. L. Wearne, “Turing pattern formation in fractional activator-inhibitor systems”, Physical Review E, 72:2 (2005), 026101 | DOI | MR