Construction of interactive geometric model of outside surface of a spacecraft
Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 37-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper author introduces the approach to construction of interactive model of external spacecraft surface which is used in applications related to computing integrals on surface of a spacecraft, finding visible parts of surface taking in account its each other overlapping, finding projection of surface to arbitrary plane using given projection operator. In current approach surface of a spacecraft is constructed of number geometric primitives. Introduced method makes possible to turn on/off parts of the model, modeling of movable elements (like antennas, manipulators, solar batteries). This approach was implemented as a program module, which is used in number of mathematical modeling software: modeling of aerodynamic force and the moments affecting on a spacecraft, light pressure force and moments, modeling of operational behavior of solar batteries of spacecraft, modeling of thermal conditions of a spacecraft, modeling of electromagnetic waves diffraction on spacecraft surface. In this paper an example of using geometric model to compute aerodynamic force and moment is introduced.
Keywords: geometric model, spacecraft, ray tracing, invisible surface elimination, shadow modeling, hierarchical model, geometric primitives, aerodynamic load.
@article{MM_2020_32_6_a2,
     author = {Vas. V. Sazonov},
     title = {Construction of interactive geometric model of outside surface of a spacecraft},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {37--52},
     publisher = {mathdoc},
     volume = {32},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a2/}
}
TY  - JOUR
AU  - Vas. V. Sazonov
TI  - Construction of interactive geometric model of outside surface of a spacecraft
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 37
EP  - 52
VL  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a2/
LA  - ru
ID  - MM_2020_32_6_a2
ER  - 
%0 Journal Article
%A Vas. V. Sazonov
%T Construction of interactive geometric model of outside surface of a spacecraft
%J Matematičeskoe modelirovanie
%D 2020
%P 37-52
%V 32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_6_a2/
%G ru
%F MM_2020_32_6_a2
Vas. V. Sazonov. Construction of interactive geometric model of outside surface of a spacecraft. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 37-52. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a2/

[1] N. D. Semkin, V. L. Balakin, V. V. Bragin, “Modelirovanie raspredeleniia elektromagnitnogo polia pri elektrostaticheskom razriade na poverkhnosti kosmicheskogo apparata”, Vestnik Samarskogo gos. aerokosmicheskogo universiteta, 2012, no. 2 (33) | Zbl

[2] V. I. Kurenkov, V. V. Salmin, B. A. Abramov, Modelirovanie tselevogo funktsionirovaniia kosmicheskikh apparatov nabliudeniia s uchetom energobalansa, Izd-vo SGAU, Samara, 2007, 173 pp.

[3] N. D. Semkin, V. L. Balakin, V. V. Bragin, “Modelirovanie raspredeleniia elektromagnitnogo polia pri elektrostaticheskom razriade na poverkhnosti kosmicheskogo apparata”, Vestnik SGAU, 2012, no. 2 (33) | Zbl

[4] N. N. Golovanov, Geometricheskoe modelirovanie, uchebnik dlia uchrezhdenii vyssh. prof. obrazovaniia, Izdatelskii tsentr «Akademiia», M., 2011, 272 pp.

[5] V. V. Sazonov, Vas. V. Sazonov, “Ispolzovanie utochnennoi modeli aerodinamicheskogo momenta v zadache rekonstruktsii vrashchatelnogo dvizheniia sputnikov foton”, Kosmicheskie issledovaniia, 49:2 (2011), 117–127

[6] V. V. Sazonov, Vas. V. Sazonov, “Raschet glavnogo vektora i glavnogo momenta sil svetovogo davleniia, deistvuiushchikh na kosmicheskii apparat s solnechnym parusom”, Kosmicheskie issledovaniia, 49:1 (2011), 59–67 | MR

[7] S. B. Medvedev, V. V. Sazonov, Kh. U. Saigiraev, “Modelirovanie zon neustoichivoi raboty radiotekhnicheskoi izmeritelnoi sistemy s aktivnym otvetom vo vremia sblizheniia i stykovki kosmicheskikh korablei s Mezhdunarodnoi kosmicheskoi stantsiei”, Matematicheskoe modelirovanie, 24:2 (2012), 151–160 | Zbl

[8] V. V. Sazonov, “Algoritm opredeleniia osveshchennosti solnechnykh batarei Rossiiskogo segmenta Mezhdunarodnoi kosmicheskoi stantsii”, Izvestiia MGTU “MAMI”, 3:2 (20) (2014), 65–70 | MR

[9] D. Cohen-Or et al., “A survey of visibility for walkthrough applications”, IEEE Transactions on Visualization and Computer Graphic, 9:3 (2003), 412–431 | DOI

[10] www.assimp.org

[11] V. V. Sazonov, “Algoritm otyskaniia osveshchennykh uchastkov mnogogrannykh poverkhnostei v ploskoparallelnom svetovom potoke”, Mat. modelir., 19:6 (2007), 16–31 | MR

[12] https://www.maths.tcd.ie/d̃wmalone/p/rt95.pdf

[13] T. Möller, B. Trumbore, “Fast, Minimum Storage Ray-Triangle Intersection”, Journal of Graphics Tools, 2:1 (1997), 21–28 | DOI

[14] Bala R. Vatti, “A generic solution to polygon clipping”, Communications of the ACM, 35:7, July (1992), 56–63 | DOI

[15] http://www.angusj.com/delphi/clipper.php

[16] M. Kagan, S. Pushko, A. Samylovskaya, V. Sazonov, I. Samylovskiy, A. Sapelkin, “Shadow Thermal Cycling and Its Effect on Predicted Time of EOL of SA”, 12th European Space Power Conference (ESPC-2019) (Juan-les-Pins, Côte d'Azur, France)

[17] H. ElGindy, H. Everett, G. T. Toussaint, “Slicing an ear using prune-and-search”, Pattern Recognition Letters, 14:9 (1993), 719–722 | DOI | Zbl

[18] V. V. Beletskii, Dvizhenie iskusstvennogo sputnika Zemli otnositelno tsentra mass, Nauka, M., 1965, 416 pp.