Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_6_a1, author = {M. D. Bragin and B. V. Rogov}, title = {High-order bicompact schemes for numerical modelling of multispecies multi-reaction gas flows}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--36}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_6_a1/} }
TY - JOUR AU - M. D. Bragin AU - B. V. Rogov TI - High-order bicompact schemes for numerical modelling of multispecies multi-reaction gas flows JO - Matematičeskoe modelirovanie PY - 2020 SP - 21 EP - 36 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_6_a1/ LA - ru ID - MM_2020_32_6_a1 ER -
M. D. Bragin; B. V. Rogov. High-order bicompact schemes for numerical modelling of multispecies multi-reaction gas flows. Matematičeskoe modelirovanie, Tome 32 (2020) no. 6, pp. 21-36. http://geodesic.mathdoc.fr/item/MM_2020_32_6_a1/
[1] G. I. Marchuk, Metody rashchepleniia, Nauka, M., 1988, 263 pp.
[2] A. A. Samarskii, The theory of difference schemes, Marcel Dekker, New York, 2001, 786 pp. | MR | MR | Zbl
[3] N. N. Yanenko, The method of fractional steps: the solution of problems of mathematical physics in several variables, Springer-Verlag, Berlin, 1971, 160 pp. | MR | Zbl
[4] G. Strang, “On the construction and comparison of difference schemes”, SIAM J. Numer. Anal., 5:2 (1968), 506–517 | DOI | MR | Zbl
[5] V. A. Levin, I. S. Manuylovich, V. V. Markov, “Numerical simulation of spinning detonation in circular section channels”, Comp. Math. Math. Phys., 56:6 (2016), 1102–1117 | DOI | DOI | MR | Zbl
[6] B. Yu, L. Li, B. Zhang, J. Wang, “An approach to obtain the correct shock speed for Euler equations with stiff detonation”, Commun. Comput. Phys., 22:1 (2017), 259–284 | DOI | MR
[7] W. Wang, C. W. Shu, H. C. Yee, D. V. Kotov, B. Sjögreen, “High order finite difference methods with subcell resolution for stiff multispecies discontinuity capturing”, Commun. Comput. Phys., 17:2 (2015), 317–336 | DOI | MR | Zbl
[8] A. V. Danilin, A. V. Solovjev, A. M. Zaitsev, “Modifikatsiia skhemy «KABARE» dlia chislennogo modelirovaniia odnomernykh detonatsionnykh techenii s ispolzovaniem odnostadiinoi neobratimoi modeli khimicheskoi kinetiki”, Vychisl. Metody i Progr., 18:1 (2017), 1–10
[9] A. Lopato, P. Utkin, “Numerical study of detonation wave propagation in the variable cross section channel using unstructured computational grids”, J. Combustion, 2018 (2018), 3635797, 8 pp. | DOI
[10] P. Colella, A. Majda, V. Roytburd, “Theoretical and numerical structure for reacting shock waves”, SIAM J. Sci. Stat. Comp., 7:4 (1986), 1059–1080 | DOI | MR | Zbl
[11] W. Wang, C. W. Shu, H. C. Yee, B. Sjögreen, “High order finite difference methods with subcell resolution for advection equations with stiff source terms”, J. Comp. Phys., 231 (2012), 190–214 | DOI | MR | Zbl
[12] W. Bao, S. Jin, “The random projection method for hyperbolic conservation laws with stiff reaction terms”, J. Comp. Phys., 163:1 (2000), 216–248 | DOI | MR | Zbl
[13] W. Bao, S. Jin, “The random projection method for stiff multispecies detonation capturing”, J. Comp. Phys., 178:1 (2002), 37–57 | DOI | MR | Zbl
[14] L. Tosatto, L. Vigevano, “Numerical solution of under-resolved detonations”, J. Comp. Phys., 227 (2008), 2317–2343 | DOI | MR | Zbl
[15] M. D. Bragin, B. V. Rogov, “High-order bicompact schemes for shock-capturing computations of detonation waves”, Comp. Math. Math. Phys., 59:8 (2019), 1314–1323 | DOI | DOI | MR | Zbl
[16] M. D. Bragin, B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations”, Comp. Math. Math. Phys., 56:6 (2016), 947–961 | DOI | DOI | MR | Zbl
[17] B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Appl. Numer. Math., 139 (2019), 136–155 | DOI | MR | Zbl
[18] R. Alexander, “Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl
[19] M. D. Bragin, B. V. Rogov, “On exact dimensional splitting for a multidimensional scalar quasilinear hyperbolic conservation law”, Dokl. Math., 94:1 (2016), 382–386 | DOI | MR | Zbl
[20] M. D. Bragin, B. V. Rogov, “A conservative limiting method for bicompact schemes”, Keldysh Institute preprints, 2019, 008, 26 pp.
[21] M. D. Bragin, B. V. Rogov, “Bicompact schemes for multidimensional hyperbolic equations on Cartesian meshes with solution-based AMR”, Keldysh Institute Preprints, 2019, 011, 27 pp.