Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_5_a3, author = {A. V. Shilkov}, title = {Lebesgue moment method for solving the neutron transport equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--94}, publisher = {mathdoc}, volume = {32}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_5_a3/} }
A. V. Shilkov. Lebesgue moment method for solving the neutron transport equation. Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 59-94. http://geodesic.mathdoc.fr/item/MM_2020_32_5_a3/
[1] M. N. Nikolaev, V. V. Filippov, “Measurement of the resonance structure parameters of the total cross sections of some elements in the neutron energy range 0.3–2.7 MeV”, Soviet Atomic Energy, 15:6 (1963), 1281–1286 | DOI
[2] M. N. Nikolaev, A. A. Ignatov, N. V. Isaev, V. F. Kokhlov, “The method of subgroups for con-sidering the resonance structure of the cross sections in neutron calculations. P. 1”, Soviet Atomic Energy, 29:1 (1970), 689–695 | DOI
[3] M. N. Nikolaev, A. A. Ignatov, N. V. Isaev, V. F. Kokhlov, “The method of subgroups for considering the resonance structure of cross sections in neutron calculations”, Soviet Atomic Energy, 30:5 (1971), 528–533 | DOI
[4] L. B. Levitt, “The probability table method for treating unresolved neutron resonances in Monte Carlo calculations”, Nuclear Sci. Eng., 49:4 (1972), 450–457 | DOI
[5] D. E. Cullen, “Application of the probability table method to multigroup calculations of neutron transport”, Nuclear Sci. Eng., 55 (1974), 387–400 | DOI
[6] D. E. Cullen, “Nuclear data preparation”, Handbook of nuclear engineering, v. I, Nuclear engineering fundamentals, ed. Cacuci D. G., Springer, NY, 2010, 282–425
[7] I. L. Tsvetkova, A. V. Shilkov, “Osrednenie uravneniia perenosa v rezonansno pogloshchaiushchei srede”, Matem. modelirovanie, 1:1 (1989), 91–100 | MR | Zbl
[8] A. V. Shilkov, “Metody osredneniia sechenii i energeticheskogo spektra v zadachakh perenosa neitronov”, Matem. modelirovanie, 3:2 (1991), 63–81 | MR
[9] A. V. Shilkov, “Generalized multigroup approximation and Lebesgue averaging method in particle transport problems”, Transp. Theory and Stat. Physics, 23:6 (1994), 781–814 | DOI | MR | Zbl
[10] A. V. Shilkov, M. N. Gertsev, “Verification of the Lebesgue averaging method”, Math. Models and Comp. Simulations, 27:8 (2015), 13–31 | MR | Zbl
[11] E. N. Aristova, M. N. Gertsev, A. V. Shilkov, “Lebesgue averaging method in serial computations of atmospheric radiation”, Comp. Math. Math. Phys., 57:6 (2017), 1022–1035 | DOI | MR | Zbl
[12] A. V. Shilkov, “The moment method of Lebesgue aggregation and spectrum recovery in particle transport problems”, Math. Models and Comp. Simul., 9:3 (2017), 263–280 | DOI | MR | Zbl
[13] K. Ia. Kondratev, “O pogloshchenii dlinnovolnovoi radiatsii v atmosfere”, Meteorologiia i gidrologiia, 1947, no. 6, 3–12
[14] K. Ia. Kondratev, Perenos dlinnovolnovogo izlucheniia v atmosfere, GTI, M., 1950
[15] D. E. Cullen, G. C. Pomraning, “The multiband method in radiative transfer calculations”, Quant. Spectrosc. and Rad. Transfer, 24 (1980), 97–117 | DOI
[16] A. A. Arking, K. Grossman, “The Influence of line shape and band structure on temperatures in planetary atmospheres”, J. Atmosph. Sci., 29 (1972), 937–949 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[17] D. A. Domoto, “Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function”, Quant. Spectrosc. Rad. Transfer, 14 (1974), 935–942 | DOI
[18] A. A. Lacis, V. Oinas, “A description of the correlated k-distribution method for modeling nongray gaseous absorption. Thermal emission and multiple scattering in vertically inho-mogeneous atmospheres”, J. Geoph. Research, 96:D5 (1991), 9027–9063 | DOI
[19] Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres”, J. Atmosph. Sci., 49 (1992), 2139–2156 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[20] E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave”, J. Geoph. Research., 102:D14 (1997), 16,663–16,682
[21] M. F. Modest, “Narrow-band and full-spectrum k-distributions for radiative heat transfer — correlated-k vs. scaling approximation”, Quant. Spectrosc. Rad. Transfer, 76:1 (2003), 69–83 | DOI | MR
[22] Uchenye zapiski Leningr. universiteta, ser. Mat. nauk (Astronom.), 6:1 (1936), 7–18 | MR
[23] J. C. Stewart, “Non-grey radiative transfer”, Quant. Spectr. Rad. Transfer, 4 (1964), 723–729 | DOI
[24] V. Ya. Gol'din, B. N. Chetverushkin, “Methods of solving one-dimentional problems of radiation gas dynamics”, USSR Comp. Math. Math. Physics, 12:4 (1972), 177–189 | DOI | MR
[25] V. M. Krivtsov, “Ob odnom podkhode k raschetu selektivnogo izlucheniia”, Zh. Vych. mat. i mat. fiziki, 14:6 (1974), 1595–1599
[26] R. C. Block, Y. Danon, F. Gunsing, R. C. Haight, “Neutron cross section measurements”, Handbook of nuclear engineering, v. I, Nuclear engineering fundamentals, ed. Cacuci D. G., Springer, NY., 2010, 3–81
[27] P. Obložinsky, M. Herman, S. F. Mughabghab, “Evaluated nuclear data”, Handbook of nuclear engineering, v. I, Nuclear engineering fundamentals, ed. Cacuci D. G., Springer, NY., 2010, 86–187
[28] F. Frohner, Evaluation and analysis of nuclear resonance data, JEFF Rep. 18, OECD/NEA, 2000, 124 pp.
[29] Nuclear Energy Agency. Evaluated nuclear data library descriptions
[30] A. Trkov, M. Herman, D. A. Brown (eds.), ENDF/B-VII.1 Evaluated Nuclear Data Library. ENDF-6 Formats manual. Data formats procedures for the Evaluated Nucl. Data Files ENDF/B-VI, ENDF/B-VII ENDF/B-VIII, Rep. BNL-203218-2018-INRE, Rev. 215, Brookhaven Nation. Lab., Upton, NY, 2018, 418 pp.
[31] ROSFOND — Russian Library of Evaluated Neutron Data
[32] Nuclear Energy Agency. JEFF-3.2 evaluated data library — Neutron data
[33] JENDL — Japanese Evaluated Nuclear Data Library
[34] R. E. MacFarlane, A. C. Kahler, “Methods for processing ENDF/B-VII with NJOY”, Nuclear Data Sheets, 111:12 (2010), 2739–2890 | DOI
[35] R. E. MacFarlane, D. W. Muir, R. M. Boicourt, A. C. Kahler, J. L. Conlin, J. Lloyd, The NJOY nuclear data processing system, Vers. 2016, USA, LANL report LA-UR-17-20093, 2016
[36] R. E. MacFarlane, “Neutron slowing down and thermalization”, Handbook of nuclear engineering, v. I, Nuclear engin. fundam., ed. Cacuci D. G., Springer, NY, 2010, 181–277
[37] Weinberg A. M., Wigner E. P., The physical theory of neutron chain reactors, The University of Chicago Press, 1958 | MR
[38] V. N. Koshcheev, G. N. Manturov, M. N. Nikolaev, A. M. Tsibulia, “Biblioteka gruppovykh konstant BNAB-RF dlia raschetov reaktorov i zashchity”, Izv. vuzov. Iadernaia energetika, 2014, no. 3, 93–101
[39] L. P. Abagian, N. O. Bazaziants, I. I. Bondarenko, M. N. Nikolaev, Gruppovye konstanty dlia raschetov iadernykh reaktorov, Atomizdat, M., 1964
[40] E. Amaldi, E. Fermi, “On the absorption and the diffusion of slow neutrons”, Phys. Rev., 50:10 (1936), 899–928 ; E. Amaldi, E. Fermi, “O pogloschenii i diffuzii medlennykh neitronov”: E. Fermi, Nauchnye trudy, v. 1, Nauka, M., 1971, 686–740 | DOI
[41] G. I. Marchuk, Metody rascheta iadernykh reaktorov, Gosatomizdat, M., 1961
[42] Bell G. I., Glasstone S., Nuclear reactor theory, Van Nostrand Reinhold, NY, 1970 | MR
[43] M. N. Nikolaev, B. G. Riazanov, M. M. Savoskin, A. M. Tsibulia, Mnogogruppovoe priblizhenie v teorii perenosa neitronov, Energoatomizdat, M., 1984
[44] W. M. Elsasser, “Mean absorption and equivalent absorption coefficient of a band spectrum”, Phys. Rev., 54:2 (1938), 126–129 | DOI
[45] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, v. 1, Elementary Functions, Taylor and Francis, 2002 | MR | MR
[46] Szego G., Orthogonal polynomials, Am. Math. Soc., Providence, 1939 | MR
[47] J. Li, J. Li, “Angular anisotropy of group averaged absorption coefficient and its effect on the behavior of diffusion approach in radiative transfer”, Quant. Spectrosc. and Rad. Transfer, 110:4 (2009), 293–299