Lebesgue moment method for solving the neutron transport equation
Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 59-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of Lebesgue moments for simulating the reversal of resonances, resonance self-shielding, and block effect in the neutron spectra of extended heterogeneous objects, such as nuclear reactors, radiation shielding, and installations for studying the properties of matter, is developed. The method uses a more accurate averaging procedure over neutron energy than the group averaging. The main components of the method are the refinement of the resonance structure of neutron cross sections by dividing the energy scale into a series of sets called carriers of resonances, Lebesgue averaging of cross sections and neutron flux within carriers, and the expansion of the neutron flux in a series in basis functions that depend on the magnitude of the neutron cross sections. The expansion coefficients (the so-called Lebesgue moments) can be calculated by any available method for solving the neutron transport equation.
Keywords: nuclear reactors, neutron diagnostics, neutron spectrum, resonance selfshielding
Mots-clés : neutron transport equation.
@article{MM_2020_32_5_a3,
     author = {A. V. Shilkov},
     title = {Lebesgue moment method for solving the neutron transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--94},
     publisher = {mathdoc},
     volume = {32},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_5_a3/}
}
TY  - JOUR
AU  - A. V. Shilkov
TI  - Lebesgue moment method for solving the neutron transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 59
EP  - 94
VL  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_5_a3/
LA  - ru
ID  - MM_2020_32_5_a3
ER  - 
%0 Journal Article
%A A. V. Shilkov
%T Lebesgue moment method for solving the neutron transport equation
%J Matematičeskoe modelirovanie
%D 2020
%P 59-94
%V 32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_5_a3/
%G ru
%F MM_2020_32_5_a3
A. V. Shilkov. Lebesgue moment method for solving the neutron transport equation. Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 59-94. http://geodesic.mathdoc.fr/item/MM_2020_32_5_a3/

[1] M. N. Nikolaev, V. V. Filippov, “Measurement of the resonance structure parameters of the total cross sections of some elements in the neutron energy range 0.3–2.7 MeV”, Soviet Atomic Energy, 15:6 (1963), 1281–1286 | DOI

[2] M. N. Nikolaev, A. A. Ignatov, N. V. Isaev, V. F. Kokhlov, “The method of subgroups for con-sidering the resonance structure of the cross sections in neutron calculations. P. 1”, Soviet Atomic Energy, 29:1 (1970), 689–695 | DOI

[3] M. N. Nikolaev, A. A. Ignatov, N. V. Isaev, V. F. Kokhlov, “The method of subgroups for considering the resonance structure of cross sections in neutron calculations”, Soviet Atomic Energy, 30:5 (1971), 528–533 | DOI

[4] L. B. Levitt, “The probability table method for treating unresolved neutron resonances in Monte Carlo calculations”, Nuclear Sci. Eng., 49:4 (1972), 450–457 | DOI

[5] D. E. Cullen, “Application of the probability table method to multigroup calculations of neutron transport”, Nuclear Sci. Eng., 55 (1974), 387–400 | DOI

[6] D. E. Cullen, “Nuclear data preparation”, Handbook of nuclear engineering, v. I, Nuclear engineering fundamentals, ed. Cacuci D. G., Springer, NY, 2010, 282–425

[7] I. L. Tsvetkova, A. V. Shilkov, “Osrednenie uravneniia perenosa v rezonansno pogloshchaiushchei srede”, Matem. modelirovanie, 1:1 (1989), 91–100 | MR | Zbl

[8] A. V. Shilkov, “Metody osredneniia sechenii i energeticheskogo spektra v zadachakh perenosa neitronov”, Matem. modelirovanie, 3:2 (1991), 63–81 | MR

[9] A. V. Shilkov, “Generalized multigroup approximation and Lebesgue averaging method in particle transport problems”, Transp. Theory and Stat. Physics, 23:6 (1994), 781–814 | DOI | MR | Zbl

[10] A. V. Shilkov, M. N. Gertsev, “Verification of the Lebesgue averaging method”, Math. Models and Comp. Simulations, 27:8 (2015), 13–31 | MR | Zbl

[11] E. N. Aristova, M. N. Gertsev, A. V. Shilkov, “Lebesgue averaging method in serial computations of atmospheric radiation”, Comp. Math. Math. Phys., 57:6 (2017), 1022–1035 | DOI | MR | Zbl

[12] A. V. Shilkov, “The moment method of Lebesgue aggregation and spectrum recovery in particle transport problems”, Math. Models and Comp. Simul., 9:3 (2017), 263–280 | DOI | MR | Zbl

[13] K. Ia. Kondratev, “O pogloshchenii dlinnovolnovoi radiatsii v atmosfere”, Meteorologiia i gidrologiia, 1947, no. 6, 3–12

[14] K. Ia. Kondratev, Perenos dlinnovolnovogo izlucheniia v atmosfere, GTI, M., 1950

[15] D. E. Cullen, G. C. Pomraning, “The multiband method in radiative transfer calculations”, Quant. Spectrosc. and Rad. Transfer, 24 (1980), 97–117 | DOI

[16] A. A. Arking, K. Grossman, “The Influence of line shape and band structure on temperatures in planetary atmospheres”, J. Atmosph. Sci., 29 (1972), 937–949 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[17] D. A. Domoto, “Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function”, Quant. Spectrosc. Rad. Transfer, 14 (1974), 935–942 | DOI

[18] A. A. Lacis, V. Oinas, “A description of the correlated k-distribution method for modeling nongray gaseous absorption. Thermal emission and multiple scattering in vertically inho-mogeneous atmospheres”, J. Geoph. Research, 96:D5 (1991), 9027–9063 | DOI

[19] Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres”, J. Atmosph. Sci., 49 (1992), 2139–2156 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[20] E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave”, J. Geoph. Research., 102:D14 (1997), 16,663–16,682

[21] M. F. Modest, “Narrow-band and full-spectrum k-distributions for radiative heat transfer — correlated-k vs. scaling approximation”, Quant. Spectrosc. Rad. Transfer, 76:1 (2003), 69–83 | DOI | MR

[22] Uchenye zapiski Leningr. universiteta, ser. Mat. nauk (Astronom.), 6:1 (1936), 7–18 | MR

[23] J. C. Stewart, “Non-grey radiative transfer”, Quant. Spectr. Rad. Transfer, 4 (1964), 723–729 | DOI

[24] V. Ya. Gol'din, B. N. Chetverushkin, “Methods of solving one-dimentional problems of radiation gas dynamics”, USSR Comp. Math. Math. Physics, 12:4 (1972), 177–189 | DOI | MR

[25] V. M. Krivtsov, “Ob odnom podkhode k raschetu selektivnogo izlucheniia”, Zh. Vych. mat. i mat. fiziki, 14:6 (1974), 1595–1599

[26] R. C. Block, Y. Danon, F. Gunsing, R. C. Haight, “Neutron cross section measurements”, Handbook of nuclear engineering, v. I, Nuclear engineering fundamentals, ed. Cacuci D. G., Springer, NY., 2010, 3–81

[27] P. Obložinsky, M. Herman, S. F. Mughabghab, “Evaluated nuclear data”, Handbook of nuclear engineering, v. I, Nuclear engineering fundamentals, ed. Cacuci D. G., Springer, NY., 2010, 86–187

[28] F. Frohner, Evaluation and analysis of nuclear resonance data, JEFF Rep. 18, OECD/NEA, 2000, 124 pp.

[29] Nuclear Energy Agency. Evaluated nuclear data library descriptions

[30] A. Trkov, M. Herman, D. A. Brown (eds.), ENDF/B-VII.1 Evaluated Nuclear Data Library. ENDF-6 Formats manual. Data formats procedures for the Evaluated Nucl. Data Files ENDF/B-VI, ENDF/B-VII ENDF/B-VIII, Rep. BNL-203218-2018-INRE, Rev. 215, Brookhaven Nation. Lab., Upton, NY, 2018, 418 pp.

[31] ROSFOND — Russian Library of Evaluated Neutron Data

[32] Nuclear Energy Agency. JEFF-3.2 evaluated data library — Neutron data

[33] JENDL — Japanese Evaluated Nuclear Data Library

[34] R. E. MacFarlane, A. C. Kahler, “Methods for processing ENDF/B-VII with NJOY”, Nuclear Data Sheets, 111:12 (2010), 2739–2890 | DOI

[35] R. E. MacFarlane, D. W. Muir, R. M. Boicourt, A. C. Kahler, J. L. Conlin, J. Lloyd, The NJOY nuclear data processing system, Vers. 2016, USA, LANL report LA-UR-17-20093, 2016

[36] R. E. MacFarlane, “Neutron slowing down and thermalization”, Handbook of nuclear engineering, v. I, Nuclear engin. fundam., ed. Cacuci D. G., Springer, NY, 2010, 181–277

[37] Weinberg A. M., Wigner E. P., The physical theory of neutron chain reactors, The University of Chicago Press, 1958 | MR

[38] V. N. Koshcheev, G. N. Manturov, M. N. Nikolaev, A. M. Tsibulia, “Biblioteka gruppovykh konstant BNAB-RF dlia raschetov reaktorov i zashchity”, Izv. vuzov. Iadernaia energetika, 2014, no. 3, 93–101

[39] L. P. Abagian, N. O. Bazaziants, I. I. Bondarenko, M. N. Nikolaev, Gruppovye konstanty dlia raschetov iadernykh reaktorov, Atomizdat, M., 1964

[40] E. Amaldi, E. Fermi, “On the absorption and the diffusion of slow neutrons”, Phys. Rev., 50:10 (1936), 899–928 ; E. Amaldi, E. Fermi, “O pogloschenii i diffuzii medlennykh neitronov”: E. Fermi, Nauchnye trudy, v. 1, Nauka, M., 1971, 686–740 | DOI

[41] G. I. Marchuk, Metody rascheta iadernykh reaktorov, Gosatomizdat, M., 1961

[42] Bell G. I., Glasstone S., Nuclear reactor theory, Van Nostrand Reinhold, NY, 1970 | MR

[43] M. N. Nikolaev, B. G. Riazanov, M. M. Savoskin, A. M. Tsibulia, Mnogogruppovoe priblizhenie v teorii perenosa neitronov, Energoatomizdat, M., 1984

[44] W. M. Elsasser, “Mean absorption and equivalent absorption coefficient of a band spectrum”, Phys. Rev., 54:2 (1938), 126–129 | DOI

[45] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, v. 1, Elementary Functions, Taylor and Francis, 2002 | MR | MR

[46] Szego G., Orthogonal polynomials, Am. Math. Soc., Providence, 1939 | MR

[47] J. Li, J. Li, “Angular anisotropy of group averaged absorption coefficient and its effect on the behavior of diffusion approach in radiative transfer”, Quant. Spectrosc. and Rad. Transfer, 110:4 (2009), 293–299