Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations
Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 44-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical simulation of the evolution and interaction of flow discontinuities in a channel caused by a pulsed volume discharge has been performed. The algorithm is based on a system of quasi-gasdynamic equations in compact form. A comparison is made with experimental data and calculation results based on the Euler and Navier–Stokes equations.
Mots-clés : quasi-gasdynamic system of equations
Keywords: energy input, channel flow, Richtmyer–Meshkov instability.
@article{MM_2020_32_5_a2,
     author = {B. N. Chetverushkin and I. A. Znamenskaya and A. E. Lutsky and Ya. V. Khankhasaeva},
     title = {Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--58},
     publisher = {mathdoc},
     volume = {32},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_5_a2/}
}
TY  - JOUR
AU  - B. N. Chetverushkin
AU  - I. A. Znamenskaya
AU  - A. E. Lutsky
AU  - Ya. V. Khankhasaeva
TI  - Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 44
EP  - 58
VL  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_5_a2/
LA  - ru
ID  - MM_2020_32_5_a2
ER  - 
%0 Journal Article
%A B. N. Chetverushkin
%A I. A. Znamenskaya
%A A. E. Lutsky
%A Ya. V. Khankhasaeva
%T Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations
%J Matematičeskoe modelirovanie
%D 2020
%P 44-58
%V 32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_5_a2/
%G ru
%F MM_2020_32_5_a2
B. N. Chetverushkin; I. A. Znamenskaya; A. E. Lutsky; Ya. V. Khankhasaeva. Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations. Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 44-58. http://geodesic.mathdoc.fr/item/MM_2020_32_5_a2/

[1] O. V. Gus'kov, V. I. Kopchenov, I. I. Lipatov, V. N. Ostras', V. P. Starukhin, Processy tormozheniya sverkhzvukovykh techenii v kanalakh, Fizmatlit, M., 2008

[2] V.A. Zabaykin, “Control of pseudo shock by non-stationary effect”, Physical-Chemical Kinetics in Gas Dynamics, 12 (2011) http://chemphys.edu.ru/issues/2011-12/articles/353/

[3] I. A. Znamenskaya, D. A. Koroteev, A. E. Lutsky, “Discontinuity breakdown on shock wave interaction”, Physics of Fluids, 20 (2008), 056101 | DOI | Zbl

[4] B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations, CIMNE, Barcelona, 2008, 298 pp. | MR

[5] A. E. Lutskii, B. N. Chetverushkin, “Compact Version of the Quasi-Gasdynamic System for Modeling a Viscous Compressible Gas”, Differential Equations, 55:4 (2019), 575–580 | DOI | MR | Zbl

[6] B.N. Chetverushkin, A.V. Saveliev, V.I. Saveliev, “A Quasi-Gasdynamic Model for the Description of Magnetogasdynamic Phenomena”, Computational Mathematics and Mathematical Physics, 58:8 (2018), 1384–1394 | DOI | MR | Zbl

[7] V.I. Artem'ev, V.N. Bergel'son, A.A. Kalmykov, I.V. Nemchinov, T.I. Orlova, V.A. Rybakov, V.A. Smirnov, V.M. Khazins, “Development of a forerunner in interaction of a shock wave with a layer of reduced pressure”, Fluid Dynamics, 23:2 (1988), 290–295 | DOI

[8] E. Koroteeva, I. Znamenskaya, D. Orlov, N. Sysoev, “Shock wave interaction with a thermal layer produced by a plasma sheet actuator”, Journal of Physics D Applied Physics, 50:8 (2017), 085204 | DOI

[9] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids”, Comm. Pure. Appl. Math., 13 (1960), 297–319 | DOI | MR

[10] E.E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave”, Fluid Dynamics, 4:5 (1969), 101–104 | DOI

[11] I. G. Lebo, V. F. Tishkin, Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoyadernogo sinteza, Fizmatlit, M., 2006

[12] P.Yu. Georgievskii, V.A. Levin, O.G. Sutyrin, “Two-dimensional self-similar flows generated by the interaction between a shock and low-density gas regions”, Fluid Dynamics, 45:2 (2010), 281–288 | DOI

[13] Zhigang Zhai, Ting Si, Xiyun Lu, Xisheng Luo, “Manipulation of three-di?mensional Richtmyer-Meshkov instability by initial interfacial principal curvatures”, Physics of Fluids, 29 (2017), 032106 | DOI