Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_5_a2, author = {B. N. Chetverushkin and I. A. Znamenskaya and A. E. Lutsky and Ya. V. Khankhasaeva}, title = {Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {44--58}, publisher = {mathdoc}, volume = {32}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_5_a2/} }
TY - JOUR AU - B. N. Chetverushkin AU - I. A. Znamenskaya AU - A. E. Lutsky AU - Ya. V. Khankhasaeva TI - Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations JO - Matematičeskoe modelirovanie PY - 2020 SP - 44 EP - 58 VL - 32 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_5_a2/ LA - ru ID - MM_2020_32_5_a2 ER -
%0 Journal Article %A B. N. Chetverushkin %A I. A. Znamenskaya %A A. E. Lutsky %A Ya. V. Khankhasaeva %T Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations %J Matematičeskoe modelirovanie %D 2020 %P 44-58 %V 32 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_5_a2/ %G ru %F MM_2020_32_5_a2
B. N. Chetverushkin; I. A. Znamenskaya; A. E. Lutsky; Ya. V. Khankhasaeva. Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations. Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 44-58. http://geodesic.mathdoc.fr/item/MM_2020_32_5_a2/
[1] O. V. Gus'kov, V. I. Kopchenov, I. I. Lipatov, V. N. Ostras', V. P. Starukhin, Processy tormozheniya sverkhzvukovykh techenii v kanalakh, Fizmatlit, M., 2008
[2] V.A. Zabaykin, “Control of pseudo shock by non-stationary effect”, Physical-Chemical Kinetics in Gas Dynamics, 12 (2011) http://chemphys.edu.ru/issues/2011-12/articles/353/
[3] I. A. Znamenskaya, D. A. Koroteev, A. E. Lutsky, “Discontinuity breakdown on shock wave interaction”, Physics of Fluids, 20 (2008), 056101 | DOI | Zbl
[4] B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations, CIMNE, Barcelona, 2008, 298 pp. | MR
[5] A. E. Lutskii, B. N. Chetverushkin, “Compact Version of the Quasi-Gasdynamic System for Modeling a Viscous Compressible Gas”, Differential Equations, 55:4 (2019), 575–580 | DOI | MR | Zbl
[6] B.N. Chetverushkin, A.V. Saveliev, V.I. Saveliev, “A Quasi-Gasdynamic Model for the Description of Magnetogasdynamic Phenomena”, Computational Mathematics and Mathematical Physics, 58:8 (2018), 1384–1394 | DOI | MR | Zbl
[7] V.I. Artem'ev, V.N. Bergel'son, A.A. Kalmykov, I.V. Nemchinov, T.I. Orlova, V.A. Rybakov, V.A. Smirnov, V.M. Khazins, “Development of a forerunner in interaction of a shock wave with a layer of reduced pressure”, Fluid Dynamics, 23:2 (1988), 290–295 | DOI
[8] E. Koroteeva, I. Znamenskaya, D. Orlov, N. Sysoev, “Shock wave interaction with a thermal layer produced by a plasma sheet actuator”, Journal of Physics D Applied Physics, 50:8 (2017), 085204 | DOI
[9] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids”, Comm. Pure. Appl. Math., 13 (1960), 297–319 | DOI | MR
[10] E.E. Meshkov, “Instability of the interface of two gases accelerated by a shock wave”, Fluid Dynamics, 4:5 (1969), 101–104 | DOI
[11] I. G. Lebo, V. F. Tishkin, Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoyadernogo sinteza, Fizmatlit, M., 2006
[12] P.Yu. Georgievskii, V.A. Levin, O.G. Sutyrin, “Two-dimensional self-similar flows generated by the interaction between a shock and low-density gas regions”, Fluid Dynamics, 45:2 (2010), 281–288 | DOI
[13] Zhigang Zhai, Ting Si, Xiyun Lu, Xisheng Luo, “Manipulation of three-di?mensional Richtmyer-Meshkov instability by initial interfacial principal curvatures”, Physics of Fluids, 29 (2017), 032106 | DOI