Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_5_a0, author = {A. N. Kozlov}, title = {Numerical model of plasma flow injection in solenoid magnetic field}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--20}, publisher = {mathdoc}, volume = {32}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_5_a0/} }
A. N. Kozlov. Numerical model of plasma flow injection in solenoid magnetic field. Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2020_32_5_a0/
[1] A. N. Kozlov, “MHD model of plasma flow interaction in the QSPA with a magnetic field of ring conductor with a current”, Plasma Physics Reports, 45:2 (2019), 147–158 | DOI | DOI
[2] A. N. Kozlov, “The study of high-velocity flow injection into the set of magnetic field coils coupled to plasma accelerator”, Plasma Physics and Controlled Fusion, 61:3 (2019), 035008 | DOI
[3] A. I. Morozov, Vvedenie v plazmodinamiku, Fizmatlit, M., 2008, 613 pp.
[4] K. V. Brushlinskii, A. M. Zaborov, A. N. Kozlov, A. I. Morozov, V. V. Savelyev, “Numerical simulation of plasma flows in the QSPA”, Sov. J. Plasma Phys., 16 (1990), 79–89
[5] K. V. Brushlinskii, Mathematical Foundations of Liquid, Gas, and Plasma Computational Mechanics, Intellekt, Dolgoprudnyi, 2017
[6] N. Klimov, V. Podkovyrov, A. Zhitlukhin, D. Kovalenko et al, “Experimental study of PFCs erosion under ITER-like transient loads at plasma gun facility QSPA”, Journal of Nuclear Materials, 390–391 (2009), 721–726 | DOI
[7] I. E. Garkusha, V. V. Chebotarev, S. S. Herashchenko, V. A. Makhlaj et al, “Novel test-bed facility for PSI issues in fusion reactor conditions on the base of next generation QSPA plasma accelerator”, Nuclear Fusion, 57:11 (2017), 116011 | DOI
[8] V. M. Astashynski, S. I. Ananin et al, “Materials surface modification using quasi-stationary plasma accelerators”, J. Surface and Coating Technology, 180–181 (2004), 392–395 | DOI
[9] A. N. Kozlov, “Influence of a longitudinal magnetic field on the Hall effect in the plasma accelerator channel”, Fluid Dynamics, 38 (2003), 653–661 | DOI | MR | Zbl
[10] A. N. Kozlov, “Basis of the quasi-steady plasma accelerator theory in the presence of a longitudinal magnetic field”, J. Plasma Physics, 74:2 (2008), 261–286 | DOI
[11] A. N. Kozlov, “Two-fluid magneto hydrodynamic model of plasma flows in a quasi-steady-state plasma accelerator with a longitudinal magnetic field”, Journal of Applied Mechanics and Technical Physics, 50:3 (2009), 396–405 | DOI | Zbl
[12] A.N. Kozlov, “Study of the near-electrode processes in quasi-steady plasma accelerators with impenetrable electrodes”, Plasma Physics Reports, 38 (2012), 12–21 | DOI
[13] K. V. Brushlinskii, N. S. Zhdanova, E. V. Stepin, “Acceleration of plasma in coaxial channels with preshaped electrodes and longitudinal magnetic field”, Computational Mathematics and Mathematical Physics, 44:4 (2018), 593–603 | DOI | DOI | MR | Zbl
[14] A. N. Kozlov, “The study of plasma flows in accelerators with thermonuclear parameters”, Plasma Physics and Controlled Fusion, 59:11 (2017), 115004 | DOI
[15] A. I. Morozov, A. N. Kozlov, “Self-cleaning effect of hydrogen plasma flow in the QSPA accelerator”, Physics of Extreme States of Matter, eds. V. E. Fortov et al., IPKhF RAN, Chernogolovka, 2007, 316–319
[16] A. N. Kozlov, V. S. Konovalov, “Numerical study of the ionization process and radiation transport in the channel of plasma accelerator”, Communications in Nonlinear Science and Numerical Simulation (CNSNS), 51 (2017), 169–179 | DOI
[17] A. N. Kozlov, “Ionization and recombination kinetics in a plasma accelerator channel”, Fluid Dynamics, 35 (2000), 784–790 | DOI | Zbl
[18] A. A. Barmin, A. N. Kozlov, “Structure of a steady-state ionization front in the plasma accelerator channel”, Fluid Dynamics, 48 (2013), 556–566 | DOI | MR | Zbl
[19] A. I. Morozov, V. V. Savelyev, “On galateas-magnetic traps with plasma-embedded conductors”, Physics-Uspekhi (Advances in Physical Sciences), 41 (1998), 1049–1089 | DOI | DOI
[20] A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, A. S. Lipatov, “Plasma parameters in the upgraded Trimyx-M Galathea”, Technical Physics, 52 (2007), 1546–1551 | DOI
[21] K. V. Brushlinsky, A. S. Goldich, N. A. Davydova, “Plasma Configurations in Galatheya Traps and Current Sheets”, Mathematical Models and Computer Simulations, 9:1 (2017), 60–70 | DOI | MR
[22] A. V. Burdakov, V. V. Postupaev, “Multiple-mirror trap: a path from Budker magnetic mirrors to linear fusion reactor”, Physics-Uspekhi (Advances in Physical Sciences), 61 (2018), 651–671
[23] V. V. Savelev, Dinamika plazmennoi strui v magnitnom pole kvadrupolnogo tipa, preprint No 117, IPM im. M.V. Keldysha RAN, M., 1991
[24] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, 2-e izd., Nauka, M., 1982, 620 pp. | MR
[25] A. G. Kulikovskii, G. A. Liubimov, Magnitnaia gidrodinamika, 2-e izd., Logos, M., 2005, 328 pp.
[26] S. I. Braginsky, “Transport processes in a plasma”, Reviews of Plasma Physics, 1, Consultants Bureau, NY, 1965, 201–292 | MR
[27] N. A. Krall, A. W. Trivelpiece, “Principles of plasma physics”, McGraw-Hill, NY, 1978
[28] Y. B. Zel'dovich, Y. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Dover Publication Inc., Mineola, NY, 2002
[29] D. Mihalas, Stellar atmospheres, W. H. Freeman, San Francisco, 1978
[30] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985
[31] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-statistical models of hot dense matter. Methods for computation opacity and equation of state, Birkhauser Verlag, Basel, Switzerland, 2005 | MR | Zbl
[32] J. I. Castor, Lectures on radiation hydrodynamics, Lawrence Livermore National Laboratory, Livermore, 2000
[33] B. A. Gasilov i dr., “Paket prikladnykh programm MARPLE3D dlia modelirovaniia na vysokoproizvoditelnykh EVM impulsnoi magnitouskorennoi plazmy”, Matematicheskoe modelirovanie, 24:1 (2012), 55–87 | Zbl
[34] A. N. Kozlov, I. E. Garkusha, V. S. Konovalov, V. G. Novikov, “The radiation intensity of the Lyman alpha line at the ionization front in the quasi-steady plasma accelerator”, Problems of Atomic Science and Technology. Series: Plasma Physics, 2013, no. 1, 128–130
[35] A. N. Kozlov, V. S. Konovalov, “3D model of the radiation transport in flows of the ionizing gas and plasma”, Keldysh Institute preprints, 2016, 086, 32 pp.
[36] E. S. Oran, J. P. Boris, “Numerical simulation of reactive flow”, Elsevier, NY, 1987 | MR | Zbl
[37] L. M. Degtyarev, F. P. Favorskii, “Flow variant of the sweep method for difference problems with strongly varying coefficients”, Sov. J. Computational Mathematics and Mathematical Physics, 9 (1969), 285–294 | DOI | MR | Zbl
[38] A. N. Kozlov, “Dynamics of rotating flows in plasma accelerator channels with a longitudinal magnetic field”, Plasma Physics Reports, 32 (2006), 378–387 | DOI