Numerical model of plasma flow injection in solenoid magnetic field
Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Injection of plasma flow generated by the quasi-stationary plasma accelerator into a region with a magnetic field created by the series of ring current-carrying conductors forming a solenoid is considered. Numerical studies were carried out on the basis of the set of the MHD equations represented in terms of the vector potential of the magnetic field, taking into account electrical conductivity, thermal conductivity and radiation transport, provided that the plasma accelerator and ring conductors are located on the same axis. It is shown that small currents in ring conductors create a magnetic field inside the solenoid, which does not significantly affect the main stream, while simultaneously isolating it from the current coils as a result of the formation of the rarefied plasma layer separating high-speed flow of dense plasma. Calculations of the MHD problem also showed that the plasma flow within the solenoid is not accompanied by an increase in the temperature of the medium.
Keywords: magnetogasdynamics model, plasma flows, plasma accelerator, ring conductors with a current.
@article{MM_2020_32_5_a0,
     author = {A. N. Kozlov},
     title = {Numerical model of plasma flow injection in solenoid magnetic field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {32},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_5_a0/}
}
TY  - JOUR
AU  - A. N. Kozlov
TI  - Numerical model of plasma flow injection in solenoid magnetic field
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 3
EP  - 20
VL  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_5_a0/
LA  - ru
ID  - MM_2020_32_5_a0
ER  - 
%0 Journal Article
%A A. N. Kozlov
%T Numerical model of plasma flow injection in solenoid magnetic field
%J Matematičeskoe modelirovanie
%D 2020
%P 3-20
%V 32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_5_a0/
%G ru
%F MM_2020_32_5_a0
A. N. Kozlov. Numerical model of plasma flow injection in solenoid magnetic field. Matematičeskoe modelirovanie, Tome 32 (2020) no. 5, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2020_32_5_a0/

[1] A. N. Kozlov, “MHD model of plasma flow interaction in the QSPA with a magnetic field of ring conductor with a current”, Plasma Physics Reports, 45:2 (2019), 147–158 | DOI | DOI

[2] A. N. Kozlov, “The study of high-velocity flow injection into the set of magnetic field coils coupled to plasma accelerator”, Plasma Physics and Controlled Fusion, 61:3 (2019), 035008 | DOI

[3] A. I. Morozov, Vvedenie v plazmodinamiku, Fizmatlit, M., 2008, 613 pp.

[4] K. V. Brushlinskii, A. M. Zaborov, A. N. Kozlov, A. I. Morozov, V. V. Savelyev, “Numerical simulation of plasma flows in the QSPA”, Sov. J. Plasma Phys., 16 (1990), 79–89

[5] K. V. Brushlinskii, Mathematical Foundations of Liquid, Gas, and Plasma Computational Mechanics, Intellekt, Dolgoprudnyi, 2017

[6] N. Klimov, V. Podkovyrov, A. Zhitlukhin, D. Kovalenko et al, “Experimental study of PFCs erosion under ITER-like transient loads at plasma gun facility QSPA”, Journal of Nuclear Materials, 390–391 (2009), 721–726 | DOI

[7] I. E. Garkusha, V. V. Chebotarev, S. S. Herashchenko, V. A. Makhlaj et al, “Novel test-bed facility for PSI issues in fusion reactor conditions on the base of next generation QSPA plasma accelerator”, Nuclear Fusion, 57:11 (2017), 116011 | DOI

[8] V. M. Astashynski, S. I. Ananin et al, “Materials surface modification using quasi-stationary plasma accelerators”, J. Surface and Coating Technology, 180–181 (2004), 392–395 | DOI

[9] A. N. Kozlov, “Influence of a longitudinal magnetic field on the Hall effect in the plasma accelerator channel”, Fluid Dynamics, 38 (2003), 653–661 | DOI | MR | Zbl

[10] A. N. Kozlov, “Basis of the quasi-steady plasma accelerator theory in the presence of a longitudinal magnetic field”, J. Plasma Physics, 74:2 (2008), 261–286 | DOI

[11] A. N. Kozlov, “Two-fluid magneto hydrodynamic model of plasma flows in a quasi-steady-state plasma accelerator with a longitudinal magnetic field”, Journal of Applied Mechanics and Technical Physics, 50:3 (2009), 396–405 | DOI | Zbl

[12] A.N. Kozlov, “Study of the near-electrode processes in quasi-steady plasma accelerators with impenetrable electrodes”, Plasma Physics Reports, 38 (2012), 12–21 | DOI

[13] K. V. Brushlinskii, N. S. Zhdanova, E. V. Stepin, “Acceleration of plasma in coaxial channels with preshaped electrodes and longitudinal magnetic field”, Computational Mathematics and Mathematical Physics, 44:4 (2018), 593–603 | DOI | DOI | MR | Zbl

[14] A. N. Kozlov, “The study of plasma flows in accelerators with thermonuclear parameters”, Plasma Physics and Controlled Fusion, 59:11 (2017), 115004 | DOI

[15] A. I. Morozov, A. N. Kozlov, “Self-cleaning effect of hydrogen plasma flow in the QSPA accelerator”, Physics of Extreme States of Matter, eds. V. E. Fortov et al., IPKhF RAN, Chernogolovka, 2007, 316–319

[16] A. N. Kozlov, V. S. Konovalov, “Numerical study of the ionization process and radiation transport in the channel of plasma accelerator”, Communications in Nonlinear Science and Numerical Simulation (CNSNS), 51 (2017), 169–179 | DOI

[17] A. N. Kozlov, “Ionization and recombination kinetics in a plasma accelerator channel”, Fluid Dynamics, 35 (2000), 784–790 | DOI | Zbl

[18] A. A. Barmin, A. N. Kozlov, “Structure of a steady-state ionization front in the plasma accelerator channel”, Fluid Dynamics, 48 (2013), 556–566 | DOI | MR | Zbl

[19] A. I. Morozov, V. V. Savelyev, “On galateas-magnetic traps with plasma-embedded conductors”, Physics-Uspekhi (Advances in Physical Sciences), 41 (1998), 1049–1089 | DOI | DOI

[20] A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, A. S. Lipatov, “Plasma parameters in the upgraded Trimyx-M Galathea”, Technical Physics, 52 (2007), 1546–1551 | DOI

[21] K. V. Brushlinsky, A. S. Goldich, N. A. Davydova, “Plasma Configurations in Galatheya Traps and Current Sheets”, Mathematical Models and Computer Simulations, 9:1 (2017), 60–70 | DOI | MR

[22] A. V. Burdakov, V. V. Postupaev, “Multiple-mirror trap: a path from Budker magnetic mirrors to linear fusion reactor”, Physics-Uspekhi (Advances in Physical Sciences), 61 (2018), 651–671

[23] V. V. Savelev, Dinamika plazmennoi strui v magnitnom pole kvadrupolnogo tipa, preprint No 117, IPM im. M.V. Keldysha RAN, M., 1991

[24] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, 2-e izd., Nauka, M., 1982, 620 pp. | MR

[25] A. G. Kulikovskii, G. A. Liubimov, Magnitnaia gidrodinamika, 2-e izd., Logos, M., 2005, 328 pp.

[26] S. I. Braginsky, “Transport processes in a plasma”, Reviews of Plasma Physics, 1, Consultants Bureau, NY, 1965, 201–292 | MR

[27] N. A. Krall, A. W. Trivelpiece, “Principles of plasma physics”, McGraw-Hill, NY, 1978

[28] Y. B. Zel'dovich, Y. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Dover Publication Inc., Mineola, NY, 2002

[29] D. Mihalas, Stellar atmospheres, W. H. Freeman, San Francisco, 1978

[30] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985

[31] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-statistical models of hot dense matter. Methods for computation opacity and equation of state, Birkhauser Verlag, Basel, Switzerland, 2005 | MR | Zbl

[32] J. I. Castor, Lectures on radiation hydrodynamics, Lawrence Livermore National Laboratory, Livermore, 2000

[33] B. A. Gasilov i dr., “Paket prikladnykh programm MARPLE3D dlia modelirovaniia na vysokoproizvoditelnykh EVM impulsnoi magnitouskorennoi plazmy”, Matematicheskoe modelirovanie, 24:1 (2012), 55–87 | Zbl

[34] A. N. Kozlov, I. E. Garkusha, V. S. Konovalov, V. G. Novikov, “The radiation intensity of the Lyman alpha line at the ionization front in the quasi-steady plasma accelerator”, Problems of Atomic Science and Technology. Series: Plasma Physics, 2013, no. 1, 128–130

[35] A. N. Kozlov, V. S. Konovalov, “3D model of the radiation transport in flows of the ionizing gas and plasma”, Keldysh Institute preprints, 2016, 086, 32 pp.

[36] E. S. Oran, J. P. Boris, “Numerical simulation of reactive flow”, Elsevier, NY, 1987 | MR | Zbl

[37] L. M. Degtyarev, F. P. Favorskii, “Flow variant of the sweep method for difference problems with strongly varying coefficients”, Sov. J. Computational Mathematics and Mathematical Physics, 9 (1969), 285–294 | DOI | MR | Zbl

[38] A. N. Kozlov, “Dynamics of rotating flows in plasma accelerator channels with a longitudinal magnetic field”, Plasma Physics Reports, 32 (2006), 378–387 | DOI