Modeling multi-phase flows of hydrocarbons in gas-condensate and oil wells
Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 131-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

Physical and numerical models were developed to analyze the processes occurring in the multiphase flow in the well during hydrocarbon production. The developed approaches were introduced in the new version of the DataFlow software for analyzing the hydrodynamics of multiphase hydrocarbon flows, taking into account heat exchange with the rocks surrounding the well, and phase transitions in the fluid. A detailed description of the system of equations, its numerical approximation, methods for calculating fluid properties and phase transitions in it, as well as closing relations for calculating friction and heat transfer in a two-phase flow are presented. The implemented models allow simulating both the stationary distribution of parameters over the wellbore and non-stationary processes, for example, when the pump speed changes during oil production. The results of test calculations showing the performance of the proposed and implemented models are given.
Mots-clés : simulation, oil
Keywords: well, gas, multicomponent model, multiphase flow.
@article{MM_2020_32_4_a9,
     author = {E. V. Usov and V. N. Ulyanov and A. A. Butov and V. I. Chukhno and P. A. Lykhin},
     title = {Modeling multi-phase flows of hydrocarbons in gas-condensate and oil wells},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {131--144},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_4_a9/}
}
TY  - JOUR
AU  - E. V. Usov
AU  - V. N. Ulyanov
AU  - A. A. Butov
AU  - V. I. Chukhno
AU  - P. A. Lykhin
TI  - Modeling multi-phase flows of hydrocarbons in gas-condensate and oil wells
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 131
EP  - 144
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_4_a9/
LA  - ru
ID  - MM_2020_32_4_a9
ER  - 
%0 Journal Article
%A E. V. Usov
%A V. N. Ulyanov
%A A. A. Butov
%A V. I. Chukhno
%A P. A. Lykhin
%T Modeling multi-phase flows of hydrocarbons in gas-condensate and oil wells
%J Matematičeskoe modelirovanie
%D 2020
%P 131-144
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_4_a9/
%G ru
%F MM_2020_32_4_a9
E. V. Usov; V. N. Ulyanov; A. A. Butov; V. I. Chukhno; P. A. Lykhin. Modeling multi-phase flows of hydrocarbons in gas-condensate and oil wells. Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 131-144. http://geodesic.mathdoc.fr/item/MM_2020_32_4_a9/

[1] A. E. Riazantsev, V. E. Vershinin, “Modelirovanie tekhnologicheskikh rezhimov raboty gazokondensatnykh skvazhin s tseliu povysheniia kondensatootdachi”, Vestnik TsKR. Rosnedra, 2015, no. 2, 20–27

[2] A. V. Tatosov, V. E. Vershinin, “Metod rascheta parametrov techeniia gazokondensatnoi smesi v gazosbornoi sisteme proizvolnoi topologii”, Vestnik Tiumenskogo gosudarstvennogo universiteta. Fiz.-mat. model. Neft, gaz, energetika, 1:3 (2015), 30–38

[3] PIPESIM User Manual, Schlumberger Ltd, Houston, TX, USA, 2017

[4] User Manual IPM Prosper. IPM — single well model overview, 2007

[5] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 484 pp.

[6] A. I. Brusilovskii, Fazovye ravnovesiia v sistemakh prirodnykh uglevodorodov, Nedra, M., 1992, 272 pp.

[7] S. S. Kutateladze, M. A. Strykovich, Gidrodinamika gazozhidkostnykh sistem, Energiia, M., 1976, 296 pp.

[8] J. P. Brill, H. D. Beggs, Two Phase Flows in Pipes, 6th edition, University of Tulsa, Tulsa, Oklahoma, 1992, 639 pp.

[9] T. Ahmed, Equations of State and PVT Analysis: Applications for Improved Reservoir Modeling, Gulf Publishing Company, 2007, 570 pp.

[10] Z. S. Aliev, R. N. Ismagilov, Gazogidrodinamicheskie osnovy issledovaniia skvazhin na gazokondensatnost, Nedra, M., 2012, 214 pp.

[11] James P. Brill, Multiphase flow in wells, Henry L. Doherty memorial fund of AIME, Society of petroleum engineers, Richardson, Tex., 1999, 384 pp. | MR

[12] D. Y. Peng, D. B. Robinson, “A new two-constant equation of state”, Industrial Engineering Chemistry Fundamentals, 15:1 (1976), 59–64 | DOI | MR | Zbl

[13] G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chemical Engineering Science, 27:6 (1972), 1197–1203 | DOI

[14] K. W. Won, “Thermodynamics for solid solution-liquid-vapor equilibria: wax phase formation from heavy hydrocarbon mixtures”, Fluid Phase Equilibria, 30 (1986), 265–279 | DOI

[15] J. Lohrenz, B. G. Bray, C. R. Clark, “Calculating viscosities of reservoir fluids from their compositions”, Journal of Petroleum Technology, 16:10 (1964), 1171–1716 | DOI

[16] A. L. Lee, M. H. Gonzalez, B. E. Eakin, “The viscosity of natural gases”, Journal of Petroleum Technology, 18:8 (1966), 997–1000 | DOI

[17] K. S. Pedersen, A. Fredenslund, P. Thomassen, Properties of oils, natural gases, v. 5, Gulf Pub Co., 1995, 252 pp.

[18] K. C. Mo, K. E. Gubbins, “Conformal solution theory for viscosity and thermal conductivity of mixtures”, Molecular Physics, 31:3 (1976), 825–847 | DOI

[19] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd edition, Butterworth-Heinemann, New York, 1987 | MR

[20] A. D. Altshul, L. S. Zhivotinskii, L. P. Ivanov, Gidravlika i aerodinamika, Stroiizdat, M., 1987, 414 pp.

[21] A. R. Hagedorn, K. E. Brown, “Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits”, Journal of Petroleum Technology, 17:4 (1965), 475–484 | DOI

[22] D. H. Beggs, J. P. Brill, “A study of two-phase flow in inclined pipes”, Journal of Petroleum Technology, 25:5 (1973), 607–617 | DOI

[23] H. Duns, N. C. Ros, “Vertical flow of gas and liquid mixtures in wells”, 6th World Petroleum Congress (1963, January)

[24] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, McGraw-Hill, 1980, 197 pp. | Zbl