Comparison of domain partitioning algorithms in the problem of direct flow simulation within rock samples at pore scale
Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 107-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The combination of computed tomography and computational experiment is an important and promising tool in the study of the properties of various materials. State-of-the-art tomographic methods allow to obtain three-dimensional image of materials with high resolution, which leads to a high dimension of discrete settings (10$^6$–10$^9$ numerical cells). Their analysis is not conceivable without application of parallel computing methods. In its turn, the efficiency of parallel simmulations with a large number of processors depends largely on the balanced distribution of the mesh across the processors. In this work, simulation of a single-phase fluid flow within pore space of a sandstone sample with voxel representation is used to compare the partitions obtained by various methods using parallel partitioning tools ParMETIS, Zoltan, and GridSpiderPar. Average time spent on interprocess exchange during one time step of the considered parallel simulation was compared when the grid was distributed over the cores in accordance with various partitions. The obtained results demonstrate advantages of some algorithms and reveal the criteria, crucial for the problem. As a numerical simulator DiMP-Hydro is used.
Keywords: mesh decomposition, voxel geometry, pore space, graph partitioning.
@article{MM_2020_32_4_a7,
     author = {E. N. Golovchenko and M. V. Iakobovski and V. A. Balashov and E. B. Savenkov},
     title = {Comparison of domain partitioning algorithms in the problem of direct flow simulation within rock samples at pore scale},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--115},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_4_a7/}
}
TY  - JOUR
AU  - E. N. Golovchenko
AU  - M. V. Iakobovski
AU  - V. A. Balashov
AU  - E. B. Savenkov
TI  - Comparison of domain partitioning algorithms in the problem of direct flow simulation within rock samples at pore scale
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 107
EP  - 115
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_4_a7/
LA  - ru
ID  - MM_2020_32_4_a7
ER  - 
%0 Journal Article
%A E. N. Golovchenko
%A M. V. Iakobovski
%A V. A. Balashov
%A E. B. Savenkov
%T Comparison of domain partitioning algorithms in the problem of direct flow simulation within rock samples at pore scale
%J Matematičeskoe modelirovanie
%D 2020
%P 107-115
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_4_a7/
%G ru
%F MM_2020_32_4_a7
E. N. Golovchenko; M. V. Iakobovski; V. A. Balashov; E. B. Savenkov. Comparison of domain partitioning algorithms in the problem of direct flow simulation within rock samples at pore scale. Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 107-115. http://geodesic.mathdoc.fr/item/MM_2020_32_4_a7/

[1] M. J. Blunt, Multiphase Flow in Permeable Media: A Pore-Scale Perspective, Cambridge University Press, Cambridge, 2017, 482 pp.

[2] C. F. Berg, O. Lopez, H. Berland, “Industrial applications of digital rock technology”, Journal of Petroleum Science and Engineering, 157 (2017), 131–147 | DOI

[3] J. Dvorkin, N. Derzhi, E. Diaz, Q. Fang, “Relevance of computational rock physics”, Geophysics, 76:5 (2011), E141–E153 | DOI

[4] , Imperial College London (data obrascheniya: 20.11.2019) http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/

[5] G. Karypis, V. Kumar, “A coarse-grain parallel multilevel k-way partitioning algorithm”, Proceedings of the 8th SIAM conference on Parallel Processing for Scientific Computing, 1997 | MR

[6] K. Schloegel, G. Karypis, V. Kumar, “Parallel multilevel algorithms for multi-constraint graph partitioning”, Proc. EuroPar-2000, 2000 (Accepted as a Distinguished Paper)

[7] E. N. Golovchenko, M. V. Iakobovskii, “Paket parallelnoi dekompozitsii bolshikh setok GridSpiderPar”, Vychislitelnye metody i programmirovanie, 16 (2015), 507–517

[8] E. Boman, K. Devine, U. Catalyurek, D. Bozdag, B. Hendrickson, W. F. Mitchell, J. Teresco, Zoltan: Parallel Partitioning, Load Balancing and Data-Management Services, Developers Guide, Version 3.3, Sandia National Laboratories, 2000–2010 http://www.cs.sandia.gov/Zoltan/dev_html/dev.html

[9] V. A. Balashov, E. B. Savenkov, B. N. Chetverushkin, “DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples”, MM, 12:2 (2020) | DOI | MR

[10] Yu. V. Sheretov, Dinamika sploshnyh sred pri prostranstvenno-vremennom osrednenii, RChD, M.–Izhevsk, 2009, 400 pp.

[11] B. N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.

[12] T. G. Elizarova, Quasi-gas dynamic equations, Springer, Berlin–Heidelberg, 2009, 286 pp. | MR | Zbl

[13] V. A. Balashov, E. B. Savenkov, “Direct pore-scale flow simulation using quasi-hydrodynamic equations”, Doklady Physics, 61:4 (2016), 192–194 | DOI | DOI

[14] V. A. Balashov, “Direct Simulation of Moderately Rarefied Gas Flows within Core Samples”, Mathematical Models and Computer Simulations, 11:3 (2019), 329–340 | DOI | DOI | MR | MR