Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_4_a5, author = {Y. V. Nevmerzhitskiy and A. V. Konyukhov}, title = {Streamline method for simulation of compositional nonisothermal flow of viscoplastic oils}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {75--93}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_4_a5/} }
TY - JOUR AU - Y. V. Nevmerzhitskiy AU - A. V. Konyukhov TI - Streamline method for simulation of compositional nonisothermal flow of viscoplastic oils JO - Matematičeskoe modelirovanie PY - 2020 SP - 75 EP - 93 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_4_a5/ LA - ru ID - MM_2020_32_4_a5 ER -
%0 Journal Article %A Y. V. Nevmerzhitskiy %A A. V. Konyukhov %T Streamline method for simulation of compositional nonisothermal flow of viscoplastic oils %J Matematičeskoe modelirovanie %D 2020 %P 75-93 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_4_a5/ %G ru %F MM_2020_32_4_a5
Y. V. Nevmerzhitskiy; A. V. Konyukhov. Streamline method for simulation of compositional nonisothermal flow of viscoplastic oils. Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 75-93. http://geodesic.mathdoc.fr/item/MM_2020_32_4_a5/
[1] W. Xiong, Q. Lei, S. Gao, Z. Hu, H. Xue, “Pseudo threshold pressure gradient to flow for low permeability reservoirs”, Petroleum Exploration and Development, 36 (2009), 232–236 | DOI
[2] V. T. Beraldo, M. J. Blunt, D. J. Schiozer, “Compressible streamline-based simulation with changes in oil composition”, SPE Reservoir Evaluation and Engineering, 12 (2009), 963–973 | DOI
[3] B. T. Mallison, Streamline-Based Simulation of Two-phase, Multicomponent Flow in Porous Media, PhD dissertation, Stanford University, 2004, 104 pp.
[4] M. R. Thiele, Modeling Multiphase Flow in Heterogeneous Media Using Streamtubes, PhD dissertation, Stanford University, 1994, 203 pp.
[5] P. Usman, Development of Streamline-Based Simulators for Evaluation of Heavy Oil Recovery, PhD dissertation, Waseda University, Tokyo, 2007, 161 pp.
[6] Z. Zhu, Efficient simulation of thermal enhances oil recovery processes, PhD dissertation, Stanford University, 2011, 215 pp.
[7] H. Cheng, I. Osako, A. Datta-Gupta, M. King, “A rigorous compressible streamline formulation for two- and three-phase black-oil simulation”, SPE Reservoir Evaluation and Engineering, 11 (2006), 407–417
[8] Z. X. Pang, H. Q. Liu, “The transient method and experimental study on threshold pressure gradient of heavy oil in porous media”, Petroleum Engineering Journal, 5 (2012), 7–13
[9] A. Kh. Mirzadzhanzade, Voprosy gidrodinamiki viazkoplastichnyh i viazkikh zhidkostei v primenenii k neftedobyche, Azerneftnashr, Baku, 1959, 409 pp.
[10] Advanced Process and Thermal Reservoir Simulator, CMG STARS, Version 2009, Computer Modelling Group Ltd., Calgary, AB, Canada, 2009, 1120 pp.
[11] Eclipse. 2009, Eclipse Version 2009 Software Manual, Schlumberger Ltd, 2003, 1068 pp.
[12] D. F. Sikovskiy, Metody vychislitelnoi teploperedachi, Uchebnoe posobie, Novosibirsk state University, Novosibirsk, 2011, 121 pp.
[13] A. I. Brusilovsky, Phase transformations in the development of oil and gas, The Grail, M., 2002, 572 pp.
[14] P. K. W. Vinsome, J. Westerveld, “A simple method for predicting cap and base rock heat losses in thermal reservoir simulators”, Journal of Canadian Petroleum Technology, 19 (1980), 87–90
[15] D. W. Pollock, “Semianalytical computation of path lines for finite-difference models”, Ground Water, 26 (1988), 743–750 | DOI
[16] A. Bordbar, S. Faroughi, S. A. Faroughi, “A Pseudo-TOF Based Streamline Tracing For Streamline Simulation Method in Heterogeneous Hydrocarbon Reservoirs”, American Journal of Engineering Research, 7 (2018), 23–31
[17] Ya. V. Nevmerzhitskiy, “Primenenie metoda linii toka dlia uskoreniia raschetov neizotermicheskoi nelineinoi filtratsii”, Kompiuternye issledovaniia i modelirovanie, 10:5 (2018), 709–728