Model of the producer’s behavior in the presence of random moments of obtaining a loan and investment
Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 16-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The presented work considers the problem of the firm, which makes decisions regarding investments, production and payment of dividends to the owners of the firm in the conditions of uncertainty in the timing of transactions. The task is set of the agent-producer on the finite planning horizon. An approach used to solve optimal control problem arising in the economic model is based on the method of Lagrange multipliers. Sufficient optimality conditions are formulated and a system of partial differential equations with a shift that determines the solution of the problem is derived. A solution to this system was obtained in the case of constant prices and interest rates, and in the general case, approximate solutions were obtained at a high transaction frequency. It shows the specifics of the problem compared to the problem on an infinite horizon due to the presence of a boundary layer in which the analysis can significantly change compared to the analysis of the solution within the planning horizon. This model might be used as a block of a manufacturing agent in applied modeling of the computable intertemporal equilibrium of a country's economy.
Keywords: model of an economic agent, stochastic optimal control
Mots-clés : Lagrange multipliers method.
@article{MM_2020_32_4_a1,
     author = {A. A. Zhukova},
     title = {Model of the producer{\textquoteright}s behavior in the presence of random moments of obtaining a loan and investment},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--30},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_4_a1/}
}
TY  - JOUR
AU  - A. A. Zhukova
TI  - Model of the producer’s behavior in the presence of random moments of obtaining a loan and investment
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 16
EP  - 30
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_4_a1/
LA  - ru
ID  - MM_2020_32_4_a1
ER  - 
%0 Journal Article
%A A. A. Zhukova
%T Model of the producer’s behavior in the presence of random moments of obtaining a loan and investment
%J Matematičeskoe modelirovanie
%D 2020
%P 16-30
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_4_a1/
%G ru
%F MM_2020_32_4_a1
A. A. Zhukova. Model of the producer’s behavior in the presence of random moments of obtaining a loan and investment. Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 16-30. http://geodesic.mathdoc.fr/item/MM_2020_32_4_a1/

[1] G. C. Chow, “The Lagrange method of optimization with applications to portfolio and investment decisions”, J. of Economic Dynamics and Control, 20:1–3 (1996), 1–18 | DOI | MR

[2] G. C. Chow, Dynamic Economics: Optimization by the Lagrange Method, Oxford University Press, Oxford, 1997, 248 pp.

[3] G. C. Chow, “Optimal control without solving the Bellman equation”, Journal of Economic Dynamics and Control, 17:4 (1993), 621–630 | DOI | MR | Zbl

[4] M. Y. Andreyev, V. P. Vrzheshch, N. P. Pilnik, I. G. Pospelov, M. A. Khokhlov, A. A. Zhukova, S. A. Radionov, “Intertemporal general equilibrium model of the Russian economy based on national accounts deaggregation”, J. of Math. Scienc., 197:2 (2014), 175–236 | DOI | MR | Zbl

[5] N. P. Pilnik, I. G. Pospelov, S. A. Radionov, A. A. Zhukova, “The intertemporal general equilibrium model of the economy with the product, money and stock markets”, International Journal of Computational Economics and Econometrics, 4:1/2 (2014), 207 | DOI | MR

[6] M. A. Khokhlov, I. G. Pospelov, L. Y. Pospelova, “Technology of development and implementation of realistic (country-specific) models of intertemporal equilibrium”, International Journal of Computational Economics and Econometrics, 4:1/2 (2014), 234 | DOI | MR

[7] A. A. Petrov, I. G. Pospelov, “Mathematical models of the Russian economy”, Her. Russ. Acad. Sci., 79:3 (2009), 205–216 | DOI

[8] I. G. Pospelov, M. A. Khokhlov, “Metod proverki razmernosti dlia issledovaniia modelei ekonomicheskoi dinamiki”, Matematicheskoe modelirovanie, 18:10 (2006), 113–122 | Zbl

[9] B. K. ksendal, A. Sulem, Applied stochastic control of jump diffusions, Springer, Berlin, 2007, 257 pp. | MR

[10] S. Rong, “Optimization for a financial market with jumps by Lagrange's method”, Pacific Econ. Rev., 4:3 (1999), 261–276 | DOI | MR

[11] S. Rong, Theory of stochastic differential equations with jumps and applications: mathematical and analytical techniques with applications to engineering, Springer, Berlin, 2006, 434 pp. | MR

[12] I.G. Pospelov, A.A. Zhukova, “Stokhasticheskaya model' torgovli nelikvidnym tovarom”, Trudy MFTI, 4:2 (2012), 131–147

[13] I.G. Pospelov, A.A. Zhukova, “Model' optimal'nogo potrebleniya pri nalichii vozmozhnosti kreditovaniya v sluchaynyye momenty vremeni”, Ekonomicheskiy Zhurnal VSHE, 22:3 (2018), 330–361

[14] R. F. Harrod, “An Essay in Dynamic Theory”, Econ. J., 49:193 (1939), 14–33 | DOI

[15] E. D. Domar, “Capital Expansion, Rate of Growth, and Employment”, Econometrica, 14:2 (1946), 137 | DOI

[16] D. Acemoglu, Introduction to modern economic growth, Princeton University Press, NJ., 2009, 990 pp. | Zbl

[17] I. G. Pospelov, N. P. Pil'nik, “O yestestvennykh terminal'nykh usloviyakh v modelyakh mezhvremennogo ravnovesiya”, Ekonomicheskiy zhurnal VSHE, 11:1 (2007), 1–33

[18] I. G. Pospelov, A. A. Zhukova, “Issledovaniye stokhasticheskoy modeli sberezheniy s inertsionnost'yu potrebleniya”, Trudy MFTI, 6:4 (2014), 41–48