Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_4_a1, author = {A. A. Zhukova}, title = {Model of the producer{\textquoteright}s behavior in the presence of random moments of obtaining a loan and investment}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {16--30}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_4_a1/} }
TY - JOUR AU - A. A. Zhukova TI - Model of the producer’s behavior in the presence of random moments of obtaining a loan and investment JO - Matematičeskoe modelirovanie PY - 2020 SP - 16 EP - 30 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_4_a1/ LA - ru ID - MM_2020_32_4_a1 ER -
A. A. Zhukova. Model of the producer’s behavior in the presence of random moments of obtaining a loan and investment. Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 16-30. http://geodesic.mathdoc.fr/item/MM_2020_32_4_a1/
[1] G. C. Chow, “The Lagrange method of optimization with applications to portfolio and investment decisions”, J. of Economic Dynamics and Control, 20:1–3 (1996), 1–18 | DOI | MR
[2] G. C. Chow, Dynamic Economics: Optimization by the Lagrange Method, Oxford University Press, Oxford, 1997, 248 pp.
[3] G. C. Chow, “Optimal control without solving the Bellman equation”, Journal of Economic Dynamics and Control, 17:4 (1993), 621–630 | DOI | MR | Zbl
[4] M. Y. Andreyev, V. P. Vrzheshch, N. P. Pilnik, I. G. Pospelov, M. A. Khokhlov, A. A. Zhukova, S. A. Radionov, “Intertemporal general equilibrium model of the Russian economy based on national accounts deaggregation”, J. of Math. Scienc., 197:2 (2014), 175–236 | DOI | MR | Zbl
[5] N. P. Pilnik, I. G. Pospelov, S. A. Radionov, A. A. Zhukova, “The intertemporal general equilibrium model of the economy with the product, money and stock markets”, International Journal of Computational Economics and Econometrics, 4:1/2 (2014), 207 | DOI | MR
[6] M. A. Khokhlov, I. G. Pospelov, L. Y. Pospelova, “Technology of development and implementation of realistic (country-specific) models of intertemporal equilibrium”, International Journal of Computational Economics and Econometrics, 4:1/2 (2014), 234 | DOI | MR
[7] A. A. Petrov, I. G. Pospelov, “Mathematical models of the Russian economy”, Her. Russ. Acad. Sci., 79:3 (2009), 205–216 | DOI
[8] I. G. Pospelov, M. A. Khokhlov, “Metod proverki razmernosti dlia issledovaniia modelei ekonomicheskoi dinamiki”, Matematicheskoe modelirovanie, 18:10 (2006), 113–122 | Zbl
[9] B. K. ksendal, A. Sulem, Applied stochastic control of jump diffusions, Springer, Berlin, 2007, 257 pp. | MR
[10] S. Rong, “Optimization for a financial market with jumps by Lagrange's method”, Pacific Econ. Rev., 4:3 (1999), 261–276 | DOI | MR
[11] S. Rong, Theory of stochastic differential equations with jumps and applications: mathematical and analytical techniques with applications to engineering, Springer, Berlin, 2006, 434 pp. | MR
[12] I.G. Pospelov, A.A. Zhukova, “Stokhasticheskaya model' torgovli nelikvidnym tovarom”, Trudy MFTI, 4:2 (2012), 131–147
[13] I.G. Pospelov, A.A. Zhukova, “Model' optimal'nogo potrebleniya pri nalichii vozmozhnosti kreditovaniya v sluchaynyye momenty vremeni”, Ekonomicheskiy Zhurnal VSHE, 22:3 (2018), 330–361
[14] R. F. Harrod, “An Essay in Dynamic Theory”, Econ. J., 49:193 (1939), 14–33 | DOI
[15] E. D. Domar, “Capital Expansion, Rate of Growth, and Employment”, Econometrica, 14:2 (1946), 137 | DOI
[16] D. Acemoglu, Introduction to modern economic growth, Princeton University Press, NJ., 2009, 990 pp. | Zbl
[17] I. G. Pospelov, N. P. Pil'nik, “O yestestvennykh terminal'nykh usloviyakh v modelyakh mezhvremennogo ravnovesiya”, Ekonomicheskiy zhurnal VSHE, 11:1 (2007), 1–33
[18] I. G. Pospelov, A. A. Zhukova, “Issledovaniye stokhasticheskoy modeli sberezheniy s inertsionnost'yu potrebleniya”, Trudy MFTI, 6:4 (2014), 41–48