Numerical analysis of the magnetomechanical effect in heating pipelines
Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We considered a physico-mathematical model which allows to explore the possibilities of the utilization of the «magnetic memory of metals» effect with the aim of nondestructive testing of the items made of ferromagnetic materials placed into the Earth's magnetic field. Based on the finite elements method, an algorithm and a computer code for the 3D computations of the magnetic potential distribution in a medium with nonuniform magnetic permeability were developed. The developed methods and software tools were used for the modelling of the leakage field near the fixed-ended heating pipes of the steam boilers. Relationships demonstrating the interrelation between the magnetic induction change and the magnetic leakage field were obtained. A satisfactory coincidence of computational and experimental data concerning the intensity of the magnetic leakage field distribution on the surface of the heating tube was noted.
Mots-clés : ferromagnetism
Keywords: «magnetic memory of metal», nondestructive testing of heat pipelines, mathematical modelling.
@article{MM_2020_32_4_a0,
     author = {D. S. Boykov and A. S. Boldarev and V. A. Gasilov},
     title = {Numerical analysis of the magnetomechanical effect in heating pipelines},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_4_a0/}
}
TY  - JOUR
AU  - D. S. Boykov
AU  - A. S. Boldarev
AU  - V. A. Gasilov
TI  - Numerical analysis of the magnetomechanical effect in heating pipelines
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 3
EP  - 15
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_4_a0/
LA  - ru
ID  - MM_2020_32_4_a0
ER  - 
%0 Journal Article
%A D. S. Boykov
%A A. S. Boldarev
%A V. A. Gasilov
%T Numerical analysis of the magnetomechanical effect in heating pipelines
%J Matematičeskoe modelirovanie
%D 2020
%P 3-15
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_4_a0/
%G ru
%F MM_2020_32_4_a0
D. S. Boykov; A. S. Boldarev; V. A. Gasilov. Numerical analysis of the magnetomechanical effect in heating pipelines. Matematičeskoe modelirovanie, Tome 32 (2020) no. 4, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2020_32_4_a0/

[1] N. N. Zatsepin, L. B. Korzhova, Magnitnaia defektoskopiia, Nauka i tekhnika, Minsk, 1981, 208 pp.

[2] S. V. Vonsovskii, Ia. S. Shur, Ferromagnetizm, OGIZ. Gos. izd. tekhn. teor. lit-ry, M., 1948

[3] R. Bozort, Ferromagnetizm, Izd. inostran. lit-ry, M., 1956

[4] E. S. Gorkunov, V. F. Novikov, A. P. Nichipuruk, V. V. Nassonov, A. V. Kadrov, I. N. Tatlybaeva, “Resistance of residual magnetization of heat-treated steel products to elastic deformations”, Soviet Journal of Nondestructive Testing, 27:2 (1991), 138–145

[5] V. A. Bogachev, M. I. Gonchar, E. I. Darvin, “Magnitnyi metod opredeleniia peregretukh trub iz stalei 20 i 12KH1MF poverkhnostei nagreva parovykh kotlov”, Elektricheskiie stantsii, 1995, no. 3, 9–13

[6] A. A. Dubov, Diagnostika kotelnykh trub s ispolzovaniem magnitnoi pamiati metalla, Energoizdat, M.–L., 1995

[7] L. D. Landau, E. M. Lifshitz, L. P. Pitaevskii, Electrodynamics of Continuous Media, Butterworth-Heinemann, 1984 | MR | MR

[8] A. A. Preobrazhenskii, Teoriia magnetizma, magnitnyie materialy i elementy, Vysshaia shkola, M., 1972

[9] V. G. Kuleev, M. B. Rigmant, “Osobennosti magnitouprugikh iavlenii v ferromagnitnykh sta-liah v malykh magnitnykh poliah, perpendikuliarnykh napravleniiu deistviia tsiklicheskikh rastiagivaiushchikh i szhimaiushchikh napriazhenii”, FMM, 79:1 (1995), 120–129

[10] M. L. Wilkins, S. J. French, M. Sorem, “Finite difference scheme for calculating problems in three space dimensions and time”, Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, New York, 1971, 30–33 | DOI | Zbl

[11] V. A. Gasilov, G. A. Bagdasarov, A. S. Boldarev, S. V. D'yachenko, E. L. Kartasheva, O. G. Ol'hovskaya, S. N. Boldyrev, I. V. Gasilova, V. A. SHmyrov, “Sovremennye metody razrabotki programm dlya 3D-modelirovaniya zadach plazmodinamiki (plazmennoj mul'tifiziki)”, Vestnik UGATU, Ufa, Ufimskij Gos. Aviacionnyj tekhnicheskij universitet, Ser.Upravlenie, vychislitel'naya tekhnika, i informatika, 15:5 (45) (2011), 120–129

[12] V. B. Vershinin, V. I. Delov, V. N. Sofronov, “Razrabotka i realizatsiia v komplekse D chislennogo metoda rascheta trekhmernykh nestatsionarnykh uprugoplasticheskikh techenii”, VANT, ser. Matematicheskoe modelirovanie fizicheskih protsessov, 3 (2000), 9–24

[13] V. Z. Parton, E. M. Morozov, Mekhanika uprugoplasticheskogo razrusheniia, Nauka, M., 1981