Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_3_a7, author = {I. S. Mozharovsky and S. A. Samotylova and A. Yu. Torgashov}, title = {Predictive modeling of mass-transfer technological plant using an algorithm of alternating conditional expectations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {127--142}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_3_a7/} }
TY - JOUR AU - I. S. Mozharovsky AU - S. A. Samotylova AU - A. Yu. Torgashov TI - Predictive modeling of mass-transfer technological plant using an algorithm of alternating conditional expectations JO - Matematičeskoe modelirovanie PY - 2020 SP - 127 EP - 142 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_3_a7/ LA - ru ID - MM_2020_32_3_a7 ER -
%0 Journal Article %A I. S. Mozharovsky %A S. A. Samotylova %A A. Yu. Torgashov %T Predictive modeling of mass-transfer technological plant using an algorithm of alternating conditional expectations %J Matematičeskoe modelirovanie %D 2020 %P 127-142 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_3_a7/ %G ru %F MM_2020_32_3_a7
I. S. Mozharovsky; S. A. Samotylova; A. Yu. Torgashov. Predictive modeling of mass-transfer technological plant using an algorithm of alternating conditional expectations. Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 127-142. http://geodesic.mathdoc.fr/item/MM_2020_32_3_a7/
[1] M. J. Olanrewaju, B. Huang, A. Afacan, “Online composition estimation and experiment validation of distillation processes with switching dynamics”, Chemical engineering science, 65:5 (2010), 1597–1608 | DOI
[2] T. Chatterjee, D. N. Saraf, “On-line estimation of product properties for crude distillation units”, Journal of Process Control, 14 (2004), 61–77 | DOI
[3] M. Kuhn, K. Johnson, Applied predictive modeling, Springer, New York, 2013, 600 pp. | MR | Zbl
[4] G. B. Digo, N. B. Digo, A. V. Kozlov, S. A. Samotylova, A. Yu. Torgashov, “Structural and parametric identification of soft sensors models for process plants based on robust regression and information criteria”, Automation and remote control, 78:4 (2017), 724–731 | DOI | Zbl
[5] E. Walter, L. Pronzato, “On the identifiability and distinguishability of nonlinear parametric models”, Mathematics and Computers in Simulation, 42 (1996), 125–134 | DOI | Zbl
[6] C. Cobelli, J. J. Distefano, “Parameter and structural identifiability concepts and ambiquities: a critical review and analysis”, American Physiological Society, 239:1 (1980), 7–24
[7] M. J. Chappell, K. R. Godfrey, “Structural identifiability of the parameters of a nonlinear batch reactor model”, Mathematical Biosciences, 108 (1992), 241–251 | DOI | MR | Zbl
[8] R. Bellman, K. J. Astrom, “On structural identifiability”, Mathematical Biosciences, 7:3/4 (1970), 329–339 | DOI
[9] N. Meshkat, “Identifiable reparametrizations of linear compartment models”, Symbolic Computation, 63 (2014), 46–67 | DOI | MR | Zbl
[10] S. I. Kabanihin, D. A. Voronov, A. A. Grodz', O. I. Krivorot'ko, “Identificiruemost' matematicheskih modelej medicinskoj biologii”, Vavilovskij zhurnal genetiki i selekcii, 19:6 (2015), 738–744
[11] M. J. Chappell, K. R. Godfrey, S. Vajda, “Global identifiability of the parameters of nonlinear systems with specified inputs: A comparison of methods”, Mathematical Biosciences, 102:1 (1990), 41–73 | DOI | MR | Zbl
[12] S. Vajda, H. Rabitz, E. Walter, Y. Lecourtier, “Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models”, Chemical Engineering Communications, 83 (1989), 191–219 | DOI
[13] A. Sedoglavic, “A probabilistic algorithm to test local algebraic observability in polynomial time”, Symbolic Computation, 33 (2002), 735–755 | DOI | MR | Zbl
[14] R. Brown, “Compartmental system analysis: state of the Art”, IEEE Trans-actions on Biomedical Engineering, 27:1 (1980), 1–38
[15] L. Breiman, J. Friedman, “Estimating optional transformations for multiple regression and correlation”, Journal of the American Statistical Association, 80 (1985), 580–598 | DOI | MR
[16] C. D. Holland, Fundamentals of multicomponent distillation, McGraw-Hill Book Company, New York, 1981, 633 pp.
[17] D. Wang, M. Murphy, “Estimating optimal transformations for multiple regression using the ACE algorithm”, Journal of Data Science, 2 (2004), 329–346
[18] I. S. Mozharovskii, “Sposob postroeniya neparametricheskoi modeli na osnove algoritma ACE”, XXXII Mezhdunarodnaya nauchnaya konferenciya «Matematicheskie metody v tekhnike i tekhnologiyah MMTT-32», v. 9, 2019, 39–43