Predictive modeling of mass-transfer technological plant using an algorithm of alternating conditional expectations
Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 127-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The task of predictive modelling under conditions of nonlinearity of a mass-transfer plant (MTP) on the basis of experimental data is considered. To analyze the structural identifiability of the process under study and identify factors that affect the accuracy of the structural identifiability index with an unknown model structure, a technique based on an alternating conditional expectation (ACE) algorithm with a threshold value for the structural identifiability index of the MTP model is proposed. The threshold value of the structural identifiability index is determined based on the analytical model of the object. That is taking into account the physico-chemical characteristics of the MTP. The proposed approach is illustrated using synthetic data and experimental data.
Mots-clés : ACE algorithm, mass-transfer plant
Keywords: index of structural identifiability, predictive modeling.
@article{MM_2020_32_3_a7,
     author = {I. S. Mozharovsky and S. A. Samotylova and A. Yu. Torgashov},
     title = {Predictive modeling of mass-transfer technological plant using an algorithm of alternating conditional expectations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {127--142},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_3_a7/}
}
TY  - JOUR
AU  - I. S. Mozharovsky
AU  - S. A. Samotylova
AU  - A. Yu. Torgashov
TI  - Predictive modeling of mass-transfer technological plant using an algorithm of alternating conditional expectations
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 127
EP  - 142
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_3_a7/
LA  - ru
ID  - MM_2020_32_3_a7
ER  - 
%0 Journal Article
%A I. S. Mozharovsky
%A S. A. Samotylova
%A A. Yu. Torgashov
%T Predictive modeling of mass-transfer technological plant using an algorithm of alternating conditional expectations
%J Matematičeskoe modelirovanie
%D 2020
%P 127-142
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_3_a7/
%G ru
%F MM_2020_32_3_a7
I. S. Mozharovsky; S. A. Samotylova; A. Yu. Torgashov. Predictive modeling of mass-transfer technological plant using an algorithm of alternating conditional expectations. Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 127-142. http://geodesic.mathdoc.fr/item/MM_2020_32_3_a7/

[1] M. J. Olanrewaju, B. Huang, A. Afacan, “Online composition estimation and experiment validation of distillation processes with switching dynamics”, Chemical engineering science, 65:5 (2010), 1597–1608 | DOI

[2] T. Chatterjee, D. N. Saraf, “On-line estimation of product properties for crude distillation units”, Journal of Process Control, 14 (2004), 61–77 | DOI

[3] M. Kuhn, K. Johnson, Applied predictive modeling, Springer, New York, 2013, 600 pp. | MR | Zbl

[4] G. B. Digo, N. B. Digo, A. V. Kozlov, S. A. Samotylova, A. Yu. Torgashov, “Structural and parametric identification of soft sensors models for process plants based on robust regression and information criteria”, Automation and remote control, 78:4 (2017), 724–731 | DOI | Zbl

[5] E. Walter, L. Pronzato, “On the identifiability and distinguishability of nonlinear parametric models”, Mathematics and Computers in Simulation, 42 (1996), 125–134 | DOI | Zbl

[6] C. Cobelli, J. J. Distefano, “Parameter and structural identifiability concepts and ambiquities: a critical review and analysis”, American Physiological Society, 239:1 (1980), 7–24

[7] M. J. Chappell, K. R. Godfrey, “Structural identifiability of the parameters of a nonlinear batch reactor model”, Mathematical Biosciences, 108 (1992), 241–251 | DOI | MR | Zbl

[8] R. Bellman, K. J. Astrom, “On structural identifiability”, Mathematical Biosciences, 7:3/4 (1970), 329–339 | DOI

[9] N. Meshkat, “Identifiable reparametrizations of linear compartment models”, Symbolic Computation, 63 (2014), 46–67 | DOI | MR | Zbl

[10] S. I. Kabanihin, D. A. Voronov, A. A. Grodz', O. I. Krivorot'ko, “Identificiruemost' matematicheskih modelej medicinskoj biologii”, Vavilovskij zhurnal genetiki i selekcii, 19:6 (2015), 738–744

[11] M. J. Chappell, K. R. Godfrey, S. Vajda, “Global identifiability of the parameters of nonlinear systems with specified inputs: A comparison of methods”, Mathematical Biosciences, 102:1 (1990), 41–73 | DOI | MR | Zbl

[12] S. Vajda, H. Rabitz, E. Walter, Y. Lecourtier, “Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models”, Chemical Engineering Communications, 83 (1989), 191–219 | DOI

[13] A. Sedoglavic, “A probabilistic algorithm to test local algebraic observability in polynomial time”, Symbolic Computation, 33 (2002), 735–755 | DOI | MR | Zbl

[14] R. Brown, “Compartmental system analysis: state of the Art”, IEEE Trans-actions on Biomedical Engineering, 27:1 (1980), 1–38

[15] L. Breiman, J. Friedman, “Estimating optional transformations for multiple regression and correlation”, Journal of the American Statistical Association, 80 (1985), 580–598 | DOI | MR

[16] C. D. Holland, Fundamentals of multicomponent distillation, McGraw-Hill Book Company, New York, 1981, 633 pp.

[17] D. Wang, M. Murphy, “Estimating optimal transformations for multiple regression using the ACE algorithm”, Journal of Data Science, 2 (2004), 329–346

[18] I. S. Mozharovskii, “Sposob postroeniya neparametricheskoi modeli na osnove algoritma ACE”, XXXII Mezhdunarodnaya nauchnaya konferenciya «Matematicheskie metody v tekhnike i tekhnologiyah MMTT-32», v. 9, 2019, 39–43