Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_3_a5, author = {A. V. Favorskaya and I. B. Petrov}, title = {Grid-characteristic calculation of multistorey buildings destruction}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {102--114}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_3_a5/} }
TY - JOUR AU - A. V. Favorskaya AU - I. B. Petrov TI - Grid-characteristic calculation of multistorey buildings destruction JO - Matematičeskoe modelirovanie PY - 2020 SP - 102 EP - 114 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_3_a5/ LA - ru ID - MM_2020_32_3_a5 ER -
A. V. Favorskaya; I. B. Petrov. Grid-characteristic calculation of multistorey buildings destruction. Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 102-114. http://geodesic.mathdoc.fr/item/MM_2020_32_3_a5/
[1] P. Moczo, J. O. Robertsson, L. Eisner, “The finite-difference time-domain method for modeling of seismic wave propagation”, Advances in geophysics, 48 (2007), 421–516 | DOI
[2] T. Wang, X. Tang, “Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach”, Geophysics, 68:5 (2003), 1749–1755 | DOI
[3] R. W. Graves, “Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences”, Bull. of the Seismolog. Society of America, 86:4 (1996), 1091–1106 | MR
[4] M. Dumbser, M. Kaser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes. I. The two-dimensional isotropic case with external source terms”, Geophysical Journal International, 166:6 (2006), 855–877
[5] M. Dumbser, M. Kaser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes?II. The three-dimensional isotropic case”, Geophysical Journal International, 167:6 (2006), 319–336 | DOI
[6] E. Tessmer, “3-D Seismic modeling of general material anisotropy in the presence of the free surface by Chebyshev spectral method”, Geophysical J. International, 59 (1995), 464–473
[7] H. Igel, “Wave propagation in three-dimensional spherical sections by Chebyshev spectral method”, Geophysical Journal International, 136 (1999), 559–566 | DOI
[8] D. Komatitsch, J. P. Vilotte, R. Vai, J. M. Castillo-Covarrubias, F. J. Sanchez-Sesma, “The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems”, International Journal for numerical methods in engineering, 45:9 (1999), 1139–1164 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[9] G. Seriani, “3-D large-scale wave propagation modeling by a spectral-element method on a Cray T3E multiprocessor”, Comp. Methods in Applied Mech. and Eng., 164 (1998), 235–247 | DOI | Zbl
[10] A. V. Favorskaya, I. B. Petrov, “Grid-characteristic method”, Innovations in Wave Processes Modelling and Decision Making, Ch. 7, SIST Series, 90, Springer Switzerland, 2018, 117–160 | MR
[11] A. V. Favorskaya, M. S. Zhdanov, N. I. Khokhlov, I. B. Petrov, “Modeling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method”, Geophysical Prospecting, 66:8 (2018), 1485–1502 | DOI | MR
[12] V. A. Biryukov, V. A. Miryakha, I. B. Petrov, N. I. Khokhlov, “Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 1086–1095 | DOI | MR | Zbl
[13] M. L. Yaghin, M. A. Hesari, “Dynamic analysis of the arch concrete dam under earthquake force with ABAQUS”, Journal of Applied Sciences, 8:15 (2008), 2648–2658 | DOI
[14] Y. Xunqiang, L. Jianbo, W. Chenglin, L. Gao, “ANSYS implementation of damping solvent stepwise extraction method for nonlinear seismic analysis of large 3-D structures”, Soil Dynamics and Earthquake Engineering, 44 (2013), 139–152 | DOI | MR
[15] Z. Nikolic, N. Zivaljic, H. Smoljanovic, I. Balic, “Numerical modelling of reinforced concrete structures under seismic loading based on the finite element method with discrete inter element cracks”, Earthquake Eng. Structural Dynamics, 46:1 (2017), 159–178 | DOI | MR
[16] A. Breus, A. Favorskaya, V. Golubev, A. Kozhemyachenko, I. Petrov, “Investigation of seismic stability of high-rising buildings using grid-characteristic method”, Proc. Computer Science, 154 (2019), 305–310 | DOI
[17] A. Favorskaya, V. Golubev, D. Grigorievyh, “Explanation the difference in destructed areas simulated using various failure criteria by the wave dynamics analysis”, Procedia Computer Science, 126 (2018), 1091–1099 | DOI
[18] A. V. Favorskaya, I. B. Petrov, “Study of seismic isolation by full-wave numerical modeling”, Doklady Earth Sciences, 481:5 (2018), 1070–1072 | DOI
[19] A. V. Favorskaya, A. V. Breus, B. V. Galitskii, “Application of the grid-characteristic method to the seismic isolation model”, Smart Innovation, Syst. Tech., 133 (2019), 167–181 | DOI
[20] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comput. Math. Math. Phys., 46:9 (2006), 1560–1588 | DOI | MR