Tensor expansions of the angular particle distribution
Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 61-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

A relation between the class of symmetric spherical tensors and even-odd polynomials is established. The expansions of the scattering operator of photons or neutrons in a series of symmetric spherical tensors are obtained. Among them there are expansions that have a higher speed of uniform convergence in comparison with expansions in the spherical functions and Legendre polynomials. It is shown that in problems of radiation transport in matter with predominant forward or backward scattering, it is advisable to use expansions in the system of Chebyshev polynomials and tensors.
Mots-clés : photon or neutron transport equation
Keywords: spherical tensors, expansions of the scattering operator, reduction of the order of expansions.
@article{MM_2020_32_3_a3,
     author = {A. V. Shilkov},
     title = {Tensor expansions of the angular particle distribution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--80},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_3_a3/}
}
TY  - JOUR
AU  - A. V. Shilkov
TI  - Tensor expansions of the angular particle distribution
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 61
EP  - 80
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_3_a3/
LA  - ru
ID  - MM_2020_32_3_a3
ER  - 
%0 Journal Article
%A A. V. Shilkov
%T Tensor expansions of the angular particle distribution
%J Matematičeskoe modelirovanie
%D 2020
%P 61-80
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_3_a3/
%G ru
%F MM_2020_32_3_a3
A. V. Shilkov. Tensor expansions of the angular particle distribution. Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 61-80. http://geodesic.mathdoc.fr/item/MM_2020_32_3_a3/

[1] V. S. Vladimirov, Equations of mathematical physics, Marcel Dekker, NY., 1971 | MR | MR | Zbl

[2] Bateman H., Higher transcendental functions, v. II, McGraw-Hill, NY., 1953 | MR

[3] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, 2-e izd., Nauka, M., 1979

[4] Paszkowski S., Zastosowania numeryczne wielomianow i szeregow Czebyszewa, Paristwowe Wydawnictwo Naukowe, Warszawa, 1975 | MR | MR

[5] Szego G., Orthogonal polynomials, Colloquium publ., XXIII, American Math. Society, Providence, Rhode Island, 1939 | DOI | MR

[6] A. F. Nikiforov, V. B. Uvarov, Special functions of mathematical physics. A unified introduction with applications, Birkhauser, Basel, 1988 | MR | MR | Zbl

[7] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 1, Elementary functions, Gordon and Breach, 1986 | MR | MR | Zbl

[8] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 2, Special functions, Gordon and Breach, 1986 | MR | MR | Zbl

[9] A. V. Shilkov, “Razlozhenie operatora rasseianiia uravneniia perenosa chastits v riad po sfericheskim tenzoram”, Keldysh Institute preprints, 2018, 249, 28 pp.

[10] B. Davison, J. B. Sykes, Neutron Transport Theory, Clarendon Press, Oxford, 1958 | MR

[11] V. S. Vladimirov, Mathematical Problems in the One-Velocity Theory of Particle Transport, Atomic Energy of Canada, Ontario, 1963 | MR