Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_3_a1, author = {S. D. Glyzin and S. A. Kashchenko}, title = {Family of finite-dimensional maps induced by a logistic equation with a delay}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {19--46}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_3_a1/} }
TY - JOUR AU - S. D. Glyzin AU - S. A. Kashchenko TI - Family of finite-dimensional maps induced by a logistic equation with a delay JO - Matematičeskoe modelirovanie PY - 2020 SP - 19 EP - 46 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_3_a1/ LA - ru ID - MM_2020_32_3_a1 ER -
S. D. Glyzin; S. A. Kashchenko. Family of finite-dimensional maps induced by a logistic equation with a delay. Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 19-46. http://geodesic.mathdoc.fr/item/MM_2020_32_3_a1/
[1] E. M. Wright, “A non-linear difference-differential equation”, Journal fur die reine und an-gewandte Mathematik, 194 (1955), 66–87 | MR | Zbl
[2] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$”, Contributions to the Theory of Nonlinear Oscillations, v. 4, Annals of Math. Studies, 41, ed. S. Lefschetz, Princeton University Press, 1958, 1–18 | MR
[3] S. A. Kaschenko, “K voprosu ob otsenke v prostranstve parametrov oblasti globalnoy ustoychivosti uravneniia Khatchinsona”, Nelineinye kolebaniia v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62
[4] G. S. Jones, “The existence of periodic solutions of $f'(x)=-\alpha f(x-1)[1+f(x)]$”, Journal of Contemporary Mathematical Analysis, 5 (1962), 435–450 | DOI | MR | Zbl
[5] S. A. Kaschenko, “Asimptotika periodicheskogo resheniia obobshchennogo uravneniia Khatchinsona”, Issledovaniia po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981, 22 pp.
[6] S. Kashchenko, “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Aut. Control Comp. Sci., 47:7 (2013), 470–494 | DOI
[7] S. A. Kashchenko, “Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay”, Math. Notes, 102:2 (2017), 181–192 | DOI | DOI | MR | Zbl
[8] S. Kashchenko, D. Loginov, “About Global Stable of Solutions of Logistic Equation with Delay”, Journal of Physics: Conference Series, 937:1 (2017), 012019 | DOI | MR
[9] J. K. Hale, Theory of functional differential equations, Springer Verlag, New York, 1977, 626 pp. | MR | Zbl
[10] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1965, 626 pp. | MR
[11] A. N. Sharkovskii, “Sosushchestvovanie tsiklov nepreryvnogo otobrazheniia priamoi v sebia”, Ukrainian Math. J., 16:1 (1964), 61–71
[12] M. J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations”, J. Stat. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl
[13] M. J. Feigenbaum, “The universal metric properties of nonlinear transformations”, J. Stat. Phys., 21:6 (1979), 669–706 | DOI | MR | Zbl
[14] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskiy, A. A. Samarskiy, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992, 544 pp. | MR
[15] M. Henon, “A two-dimensional mapping with a strange attractor”, Communications in Mathematical Physics, 50:1 (1976), 69–77 | DOI | MR
[16] P. Cvitanovic, G. Gunaratne, I. Procaccia, “Topological and metric properties of Henon-type strange attractors”, Physical Review A, 38:3 (1988), 1503–1520 | DOI | MR
[17] P. Kuznetsov, S. P. Kuznetsov, M. V. Pozdnyakov, Ju. V. Sedova, “Universal two-dimensional map and its radiophysical realization”, Nelin. Dinam., 8:3 (2012), 461–471 | MR
[18] S. Ruette, Chaos on the interval, University Lecture Series, 67, AMS, 2017 | DOI | MR | Zbl
[19] J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Appl. Math. Sci., 19, Springer-Verlag, 1976 | DOI | MR | Zbl
[20] E. E. Shnol, “On the stability of fixed points of two-dimensional mappings”, Differ. Equ., 30:7 (1994), 1071–1081 | MR | Zbl
[21] V.I. Arnold, Additional chapters of the theory of ordinary differential equations, Nauka, M., 1978, 304 pp.
[22] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, 1995 | MR | Zbl
[23] Yu. I. Neimark, “On some cases of periodic motions depending on parameters”, Dokl. Akad. Nauk SSSR, 129:4 (1959), 736–739 | Zbl
[24] R. J. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Report IMM-NYU 333, New York University, 1964 | MR
[25] R. J. Sacker, “A new approach to perturbation theory of invariant surfaces”, Comm. Pure Appl. Math., 18 (1965), 717–732 | DOI | MR | Zbl
[26] M. I. Bolotov, S. V. Gonchenko, A. S. Gonchenko, Ye. A. Grines, A. O. Kazakov, T. A. Levanova, V. I. Luk'yanov, Bifurkatsiia Andronova-Khopfa dlia potokov i otobrazhenii, Uchebno-metod. pos., NNSU, Nizhnii Novgorod, 2017, 73 pp.
[27] S. D. Glyzin, “Povedeniye reshenii normalnoi formy sistemy trekh sviazannykh s nimi raznostnykh avtogeneratorov”, Modelirovanie i Analiz Informatsionnykh Sistem, 13:1 (2006), 49–57
[28] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Finite-dimensional models of diffusion chaos”, Comput. Math. Math. Phys., 50:5 (2010), 816–830 | DOI | MR | Zbl
[29] I. S. Kashchenko, S. A. Kashchenko, “Normal and quasinormal forms for systems of difference and differential-difference equations”, Communications in Nonlinear Science and Numerical Simulation, 2016, Sept, 38, 243–256 | DOI | MR
[30] D. S. Glyzin, S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The dynamic renormalization method for finding the maximum lyapunov exponent of a chaotic attractor”, Differential Equations, 41:2 (2005), 284–289 | DOI | MR | Zbl
[31] S. A. Kashchenko, “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Differential Equations, 25:8 (1989), 1448–1451 | MR
[32] S. A. Kashchenko, “Bifurcational Features in Systems of Nonlinear Parabolic Equations with Weak Diffusion”, Intern. J. of Bifurcation and Chaos, 15:11 (2005), 3595–3606 | DOI | MR
[33] I. S. Kashchenko, “Asymptotic analysis of the behavior of solutions to equations with large delay”, Doklady Mathematics, 78:1 (2008), 570–573 | DOI | MR | Zbl
[34] I. S. Kashchenko, “Local dynamics of equations with large delay”, Comput. Math. Math. Phys., 48:12 (2008), 2172–2181 | DOI | MR
[35] I. S. Kashchenko, S. A. Kashchenko, “Analysis of local dynamics of difference and close to them differential-difference equations”, Russian Math. (Iz. VUZ), 62:9 (2018), 24–34 | DOI | MR | Zbl