Family of finite-dimensional maps induced by a logistic equation with a delay
Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 19-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses a family of maps that are used in the numerical simulation of a logistic equation with delay. This equation is widely used in problems of mathematical ecology. At the same time, the presented maps themselves can serve as models of the dynamics of populations; therefore, their study is of considerable interest. The paper compares the properties of the trajectories of these mappings and the original equation with delay. It is shown that the behavior of the solutions of maps can be quite complicated, while the logistic equation with delay has only a stable equilibrium state or cycle.
Keywords: logistic equation with delay, maps
Mots-clés : bifurcations.
@article{MM_2020_32_3_a1,
     author = {S. D. Glyzin and S. A. Kashchenko},
     title = {Family of finite-dimensional maps induced by a logistic equation with a delay},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--46},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_3_a1/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - S. A. Kashchenko
TI  - Family of finite-dimensional maps induced by a logistic equation with a delay
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 19
EP  - 46
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_3_a1/
LA  - ru
ID  - MM_2020_32_3_a1
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A S. A. Kashchenko
%T Family of finite-dimensional maps induced by a logistic equation with a delay
%J Matematičeskoe modelirovanie
%D 2020
%P 19-46
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_3_a1/
%G ru
%F MM_2020_32_3_a1
S. D. Glyzin; S. A. Kashchenko. Family of finite-dimensional maps induced by a logistic equation with a delay. Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 19-46. http://geodesic.mathdoc.fr/item/MM_2020_32_3_a1/

[1] E. M. Wright, “A non-linear difference-differential equation”, Journal fur die reine und an-gewandte Mathematik, 194 (1955), 66–87 | MR | Zbl

[2] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$”, Contributions to the Theory of Nonlinear Oscillations, v. 4, Annals of Math. Studies, 41, ed. S. Lefschetz, Princeton University Press, 1958, 1–18 | MR

[3] S. A. Kaschenko, “K voprosu ob otsenke v prostranstve parametrov oblasti globalnoy ustoychivosti uravneniia Khatchinsona”, Nelineinye kolebaniia v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62

[4] G. S. Jones, “The existence of periodic solutions of $f'(x)=-\alpha f(x-1)[1+f(x)]$”, Journal of Contemporary Mathematical Analysis, 5 (1962), 435–450 | DOI | MR | Zbl

[5] S. A. Kaschenko, “Asimptotika periodicheskogo resheniia obobshchennogo uravneniia Khatchinsona”, Issledovaniia po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981, 22 pp.

[6] S. Kashchenko, “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Aut. Control Comp. Sci., 47:7 (2013), 470–494 | DOI

[7] S. A. Kashchenko, “Periodic Solutions of Nonlinear Equations Generalizing Logistic Equations with Delay”, Math. Notes, 102:2 (2017), 181–192 | DOI | DOI | MR | Zbl

[8] S. Kashchenko, D. Loginov, “About Global Stable of Solutions of Logistic Equation with Delay”, Journal of Physics: Conference Series, 937:1 (2017), 012019 | DOI | MR

[9] J. K. Hale, Theory of functional differential equations, Springer Verlag, New York, 1977, 626 pp. | MR | Zbl

[10] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1965, 626 pp. | MR

[11] A. N. Sharkovskii, “Sosushchestvovanie tsiklov nepreryvnogo otobrazheniia priamoi v sebia”, Ukrainian Math. J., 16:1 (1964), 61–71

[12] M. J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations”, J. Stat. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl

[13] M. J. Feigenbaum, “The universal metric properties of nonlinear transformations”, J. Stat. Phys., 21:6 (1979), 669–706 | DOI | MR | Zbl

[14] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskiy, A. A. Samarskiy, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992, 544 pp. | MR

[15] M. Henon, “A two-dimensional mapping with a strange attractor”, Communications in Mathematical Physics, 50:1 (1976), 69–77 | DOI | MR

[16] P. Cvitanovic, G. Gunaratne, I. Procaccia, “Topological and metric properties of Henon-type strange attractors”, Physical Review A, 38:3 (1988), 1503–1520 | DOI | MR

[17] P. Kuznetsov, S. P. Kuznetsov, M. V. Pozdnyakov, Ju. V. Sedova, “Universal two-dimensional map and its radiophysical realization”, Nelin. Dinam., 8:3 (2012), 461–471 | MR

[18] S. Ruette, Chaos on the interval, University Lecture Series, 67, AMS, 2017 | DOI | MR | Zbl

[19] J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Appl. Math. Sci., 19, Springer-Verlag, 1976 | DOI | MR | Zbl

[20] E. E. Shnol, “On the stability of fixed points of two-dimensional mappings”, Differ. Equ., 30:7 (1994), 1071–1081 | MR | Zbl

[21] V.I. Arnold, Additional chapters of the theory of ordinary differential equations, Nauka, M., 1978, 304 pp.

[22] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, 1995 | MR | Zbl

[23] Yu. I. Neimark, “On some cases of periodic motions depending on parameters”, Dokl. Akad. Nauk SSSR, 129:4 (1959), 736–739 | Zbl

[24] R. J. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Report IMM-NYU 333, New York University, 1964 | MR

[25] R. J. Sacker, “A new approach to perturbation theory of invariant surfaces”, Comm. Pure Appl. Math., 18 (1965), 717–732 | DOI | MR | Zbl

[26] M. I. Bolotov, S. V. Gonchenko, A. S. Gonchenko, Ye. A. Grines, A. O. Kazakov, T. A. Levanova, V. I. Luk'yanov, Bifurkatsiia Andronova-Khopfa dlia potokov i otobrazhenii, Uchebno-metod. pos., NNSU, Nizhnii Novgorod, 2017, 73 pp.

[27] S. D. Glyzin, “Povedeniye reshenii normalnoi formy sistemy trekh sviazannykh s nimi raznostnykh avtogeneratorov”, Modelirovanie i Analiz Informatsionnykh Sistem, 13:1 (2006), 49–57

[28] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Finite-dimensional models of diffusion chaos”, Comput. Math. Math. Phys., 50:5 (2010), 816–830 | DOI | MR | Zbl

[29] I. S. Kashchenko, S. A. Kashchenko, “Normal and quasinormal forms for systems of difference and differential-difference equations”, Communications in Nonlinear Science and Numerical Simulation, 2016, Sept, 38, 243–256 | DOI | MR

[30] D. S. Glyzin, S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The dynamic renormalization method for finding the maximum lyapunov exponent of a chaotic attractor”, Differential Equations, 41:2 (2005), 284–289 | DOI | MR | Zbl

[31] S. A. Kashchenko, “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Differential Equations, 25:8 (1989), 1448–1451 | MR

[32] S. A. Kashchenko, “Bifurcational Features in Systems of Nonlinear Parabolic Equations with Weak Diffusion”, Intern. J. of Bifurcation and Chaos, 15:11 (2005), 3595–3606 | DOI | MR

[33] I. S. Kashchenko, “Asymptotic analysis of the behavior of solutions to equations with large delay”, Doklady Mathematics, 78:1 (2008), 570–573 | DOI | MR | Zbl

[34] I. S. Kashchenko, “Local dynamics of equations with large delay”, Comput. Math. Math. Phys., 48:12 (2008), 2172–2181 | DOI | MR

[35] I. S. Kashchenko, S. A. Kashchenko, “Analysis of local dynamics of difference and close to them differential-difference equations”, Russian Math. (Iz. VUZ), 62:9 (2018), 24–34 | DOI | MR | Zbl