Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_3_a0, author = {E. N. Aristova and G. I. Ovcharov}, title = {Hermite characteristic scheme for linear inhomogeneous transport equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--18}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_3_a0/} }
TY - JOUR AU - E. N. Aristova AU - G. I. Ovcharov TI - Hermite characteristic scheme for linear inhomogeneous transport equation JO - Matematičeskoe modelirovanie PY - 2020 SP - 3 EP - 18 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_3_a0/ LA - ru ID - MM_2020_32_3_a0 ER -
E. N. Aristova; G. I. Ovcharov. Hermite characteristic scheme for linear inhomogeneous transport equation. Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2020_32_3_a0/
[1] V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Compact grid-characteristic schemes of higher orders for 3D linear transport equation”, MM, 8:5 (2016), 577–584 | MR
[2] A. V. Favorskaya, I. B. Petrov, “Numerical modeling of wave processes in Rocks by Grid-Characteristic method”, Mathematical models and computer simulations, 10:5 (2018), 639–647 | DOI | MR | Zbl
[3] I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, “Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic wave”, Computational Mathematics and Mathematical Physics, 57:11, November (2017), 1771–1777 | DOI | DOI | MR | Zbl
[4] I. B. Petrov, M. V. Muratov, “Application of the grid-characteristic method in solving direct problems of seismic exploration of fractured formations (review article)”, Mathematical models and computer simulations, 11:6 (2019) | DOI | MR
[5] T. Yabe, F. Xiao, T. Utsumi, “The Constrained Interpolation Profile Method for Multiphase Analysis”, Journal of Computational Physics, 169:2, May (2001), 556–593 | DOI | MR | Zbl
[6] T. Yabe, T. Aoki, G. Sakaguchi et al., “The Compact CIP (Cubic-Interpolated Pseudo-Particle) Method as a General Hyperbolic Solver”, Computers Fluids, 19:3/4 (1991), 421–431 | DOI | MR | Zbl
[7] T. L. Tsai, S. W. Chiang, J. G. Yang, “Characteristics Method with Cubic-Spline Interpolation for Open Channel Flow Computation”, Intern. J. for Numerical Methods in Fluids, 46 (2004), 663–683 | DOI | Zbl
[8] P. Colella P. R. Woodward, “Piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201 | DOI | MR | Zbl
[9] B. V. Rogov, M. N. Mikhailovskaya, “Fourth Order Accurate Bicompact Schemes for Hyperbolic Equations”, Doklady Mathematics, 81:1 (2010), 146–150 | DOI | MR | Zbl
[10] E. N. Aristova, B. V. Rogov, “Bicompact scheme for the multidimensional stationary linear transport equation”, Applied Numerical Mathematics, 93, July (2015), 3–14 | DOI | MR | Zbl
[11] B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Applied Numerical Mathematics, 139 (2019), 136–155 | DOI | MR | Zbl
[12] A. V. Chikitkin, B. V. Rogov, “Family of central bicompact schemes with spectral resolution property for hyperbolic equations”, Applied Numerical Mathematics, 142 (2019), 151–170 | DOI | MR | Zbl