Hermite characteristic scheme for linear inhomogeneous transport equation
Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The interpolation-characteristic scheme for the numerical solution of the inhomogeneous transport equation is constructed. The scheme is based on Hermite interpolation to reconstruction the value of unknown function at the point of intersection of the backward characteristic with the cell edges. Hermite interpolation to regeneration the values of the function uses not only the nodal values of the function, but also values of its derivative. Unlike previous works, also based on Hermitian interpolation, the differential continuation of the transport equation is not used to transfer information about the derivatives to the next layer. The relationship between the integral means, nodal values and derivatives according to the Euler–Maclaurin formula is used. The third-order convergence of the difference scheme for smooth solutions is shown. The dissipative and dispersion properties of the scheme are considered on numerical examples of solutions with decreasing smoothness.
Mots-clés : advection equation, Hermite interpolation
Keywords: interpolation-characteristic method, Euler–Maclaurin formula.
@article{MM_2020_32_3_a0,
     author = {E. N. Aristova and G. I. Ovcharov},
     title = {Hermite characteristic scheme for linear inhomogeneous transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_3_a0/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - G. I. Ovcharov
TI  - Hermite characteristic scheme for linear inhomogeneous transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 3
EP  - 18
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_3_a0/
LA  - ru
ID  - MM_2020_32_3_a0
ER  - 
%0 Journal Article
%A E. N. Aristova
%A G. I. Ovcharov
%T Hermite characteristic scheme for linear inhomogeneous transport equation
%J Matematičeskoe modelirovanie
%D 2020
%P 3-18
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_3_a0/
%G ru
%F MM_2020_32_3_a0
E. N. Aristova; G. I. Ovcharov. Hermite characteristic scheme for linear inhomogeneous transport equation. Matematičeskoe modelirovanie, Tome 32 (2020) no. 3, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2020_32_3_a0/

[1] V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Compact grid-characteristic schemes of higher orders for 3D linear transport equation”, MM, 8:5 (2016), 577–584 | MR

[2] A. V. Favorskaya, I. B. Petrov, “Numerical modeling of wave processes in Rocks by Grid-Characteristic method”, Mathematical models and computer simulations, 10:5 (2018), 639–647 | DOI | MR | Zbl

[3] I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, “Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic wave”, Computational Mathematics and Mathematical Physics, 57:11, November (2017), 1771–1777 | DOI | DOI | MR | Zbl

[4] I. B. Petrov, M. V. Muratov, “Application of the grid-characteristic method in solving direct problems of seismic exploration of fractured formations (review article)”, Mathematical models and computer simulations, 11:6 (2019) | DOI | MR

[5] T. Yabe, F. Xiao, T. Utsumi, “The Constrained Interpolation Profile Method for Multiphase Analysis”, Journal of Computational Physics, 169:2, May (2001), 556–593 | DOI | MR | Zbl

[6] T. Yabe, T. Aoki, G. Sakaguchi et al., “The Compact CIP (Cubic-Interpolated Pseudo-Particle) Method as a General Hyperbolic Solver”, Computers Fluids, 19:3/4 (1991), 421–431 | DOI | MR | Zbl

[7] T. L. Tsai, S. W. Chiang, J. G. Yang, “Characteristics Method with Cubic-Spline Interpolation for Open Channel Flow Computation”, Intern. J. for Numerical Methods in Fluids, 46 (2004), 663–683 | DOI | Zbl

[8] P. Colella P. R. Woodward, “Piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201 | DOI | MR | Zbl

[9] B. V. Rogov, M. N. Mikhailovskaya, “Fourth Order Accurate Bicompact Schemes for Hyperbolic Equations”, Doklady Mathematics, 81:1 (2010), 146–150 | DOI | MR | Zbl

[10] E. N. Aristova, B. V. Rogov, “Bicompact scheme for the multidimensional stationary linear transport equation”, Applied Numerical Mathematics, 93, July (2015), 3–14 | DOI | MR | Zbl

[11] B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Applied Numerical Mathematics, 139 (2019), 136–155 | DOI | MR | Zbl

[12] A. V. Chikitkin, B. V. Rogov, “Family of central bicompact schemes with spectral resolution property for hyperbolic equations”, Applied Numerical Mathematics, 142 (2019), 151–170 | DOI | MR | Zbl