Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_2_a7, author = {M. B. Markov and S. V. Podolyako}, title = {Simulation of the proton transport in matter}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {129--142}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/} }
M. B. Markov; S. V. Podolyako. Simulation of the proton transport in matter. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 129-142. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/
[1] Vladimir E. Fortov, Extreme States of Matter. High Energy Density Physics, Springer Series in Material Science, 2016 | Zbl
[2] G. Watkin's, Radiation Damage in Semiconductors, Academic Press, N.Y., 1965
[3] W. Shockley, W. T. Read, “Statistics of Recombination of Holes and Electrons”, Phys. Rev., 87:5 (1952), 835–842 | DOI | MR | Zbl
[4] M. Hirata, H. Saito, “The Interaction of Point Defects with Impurities in Silicon”, J. Phys. Soc. Jap., 27:2 (1969), 405–414 | DOI
[5] K. Nakashima, Y. Inuishi, “Studies of Recombination Centers in Gamma-Irradiated p-Type Silicon”, J. Phys. Soc. Jap., 29:6 (1970), 1500–1512 | DOI
[6] T. C. May, M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories”, IEEE Transactions on Electron Devices, 26:1 (1979), 2–9 | DOI
[7] J. B. Reagan, R. E. Meyerott, E. E. Gaines, R. W. Nightingale, P. C. Filhert, W. L. Imhof, “Space charging currents and their effects on spacecraft systems”, IEEE Trans. Electrical Insul., 8:3 (1983), 354–365 | DOI
[8] A. R. Frederickson, L. Levy, C. L. Enloe, “Radiation-induced electrical discharges in complex structures”, IEEE Trans. Electr. Insulation, 27:6 (1992), 1166–1178 | DOI | MR
[9] A. A. Prianichnikov, A. P. Cherniaev, V. S. Khoroshkov, Vvedenie v fiziku i tekhniku protonnoi terapii, Ucheb.posobie, OOP fizicheskogo fakulteta MGU, M., 2019, 104 pp.
[10] B. Carlson, and G. Bell, “Solution of the Transport Equation by the SN method”, Proc. U.N. Intl. Conf. Peaceful Uses of Atomic Energy, 1958 | MR
[11] B. G. Karlson, K. D. Latrop, “Transport Theory: The Method of Discrete Ordinates”, Computing Methods in Reactor Physics, eds. Greenspan H., Kelber C. N., Okrent D., Gordon and Breech, New York, 167–265 | MR
[12] T. A. Germogenova, “Local properties of the solution of the transport equation”, Dokl. Akad. Nauk SSSR, 187:5 (1969), 978–981 | Zbl
[13] T. A. Germogenova, O. V. Nikolaeva, “Coarse-grid approximations of the radiation transport equation: problems with substantial absorption”, Comp. Math. Math. Phys., 41:4 (2001), 581–601 | MR | Zbl
[14] O. V. Nikolaeva, “Nodal scheme to the radiation transport equation on unstructured thetrahedral mesh”, Math. Mod. Comput. Simul., 7:6 (2015), 581–592 | DOI | MR
[15] M. E. Zhukovskii, S. V. Podolyako, R. V. Uskov, “Model of individual collisions for description of electron transport in matter”, Math. Models Comp. Simul., 4:1 (2012), 101–109 | DOI
[16] The Official Geant4 Site, http://geant4.cern.ch/
[17] The Official FLUKA Site, http://www.fluka.org
[18] N. F. Mott, H. S. W. Massey, The theory of atomic collisions, Clarendon Press, Oxford, 1965
[19] H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Clarendon Press, Oxford, 1969
[20] M. Gryzinski, “Classic Theory of Electronic and Ionic Inelastic Collisions”, Phys. Rev., 115 (1959), 374–383 | DOI | MR | Zbl
[21] L. D. Landau, E. M. Lifshitz, Physical Kinetics, Course of Theoretical Physics S, 10, First edition, Pergamon Press Ltd, 1981, 452 pp. | MR
[22] J. I. Janni, “Proton range-energy tables, 1 keV-10 GeV Energy Loss, Range, Path Length, Time-of-Flight, Straggling, Multiple Scattering, and Nuclear Interaction Probability”, Atom Data and Nucl. Data Tabl., 27 (1982), 147–339 | DOI
[23] B. Rossi, High Energy Particles, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1952
[24] M. B. Markov, S. V. Podoliako, “Modelirovanie perenosa protonov v priblizhenii nepreryvnogo zamedleniia”, Preprinty IPM im. M.V. Keldysha, 2018, 259, 20 pp. | MR
[25] G. Moliere, “Theorie der Streuung schneller geladener Teilchen I: Einzelstreuung am abgeschirmten Coulomb-Feld”, Z. f. Naturforsch, A2, 133 (1947) | Zbl
[26] M. Herman, A. Trkov (ed.), ENDF-6 Formats Manual, Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII, CSEWG Document ENDF-102, BNL-90365–2009 Rev. 1, Brookhaven National Laboratory, July 2010
[27] V. S. Barashenkov, Secheniia vzaimodeistviia chastits i iader s iadrami, OIIaI, Dubna, 1993, 346 pp.
[28] V. P. Zagonov, M. E. Zhukovskii, S. V. Podoliako, M. V. Skachkov, G. R. Tillak, K. Bellon, “Primenenie poverkhnostno orientirovannogo opisaniia obieektov dlia modelirovaniia transformatsii rentgenovskogo izlucheniia v zadachakh vychislitelnoi diagnostiki”, Matematicheskoe modelirovanie, 16:5 (2004), 103–116
[29] B. C. Antiufeev, “K obosnovaniiu modifikatsii metoda maksimalnogo secheniia”, Vychislitelnye tekhnologii, 17:2 (2012), 13–19 | MR
[30] I. V. Prokhorov, A. S. Zhuplev, “Ob effektivnosti metodov maksimalnogo secheniia v teorii perenosa izlucheniia”, Kompiuter. issledovaniia i modelir., 5:4 (2013), 573–582