Simulation of the proton transport in matter
Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 129-142

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of proton transport in matter is considered. The interaction of protons with the electron subsystem of the medium atoms is modeled in the approximation of the average energy loss during ionization scattering. Nuclear interactions are considered in the model of individual collisions. An algorithm for modeling proton transfer in piecewise-homogeneous media has been developed, combining the continuous deceleration approximation when interacting with electrons with the implicit direct modeling of elastic and inelastic scattering on nuclei. Calculations that demonstrate the effect of nuclear scattering on the distribution of the energy released by protons during scattering are presented.
Mots-clés : proton
Keywords: ionization deceleration, tracing, Bragg curve, individual collisions.
@article{MM_2020_32_2_a7,
     author = {M. B. Markov and S. V. Podolyako},
     title = {Simulation of the proton transport in matter},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/}
}
TY  - JOUR
AU  - M. B. Markov
AU  - S. V. Podolyako
TI  - Simulation of the proton transport in matter
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 129
EP  - 142
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/
LA  - ru
ID  - MM_2020_32_2_a7
ER  - 
%0 Journal Article
%A M. B. Markov
%A S. V. Podolyako
%T Simulation of the proton transport in matter
%J Matematičeskoe modelirovanie
%D 2020
%P 129-142
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/
%G ru
%F MM_2020_32_2_a7
M. B. Markov; S. V. Podolyako. Simulation of the proton transport in matter. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 129-142. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/