Simulation of the proton transport in matter
Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 129-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of proton transport in matter is considered. The interaction of protons with the electron subsystem of the medium atoms is modeled in the approximation of the average energy loss during ionization scattering. Nuclear interactions are considered in the model of individual collisions. An algorithm for modeling proton transfer in piecewise-homogeneous media has been developed, combining the continuous deceleration approximation when interacting with electrons with the implicit direct modeling of elastic and inelastic scattering on nuclei. Calculations that demonstrate the effect of nuclear scattering on the distribution of the energy released by protons during scattering are presented.
Mots-clés : proton
Keywords: ionization deceleration, tracing, Bragg curve, individual collisions.
@article{MM_2020_32_2_a7,
     author = {M. B. Markov and S. V. Podolyako},
     title = {Simulation of the proton transport in matter},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/}
}
TY  - JOUR
AU  - M. B. Markov
AU  - S. V. Podolyako
TI  - Simulation of the proton transport in matter
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 129
EP  - 142
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/
LA  - ru
ID  - MM_2020_32_2_a7
ER  - 
%0 Journal Article
%A M. B. Markov
%A S. V. Podolyako
%T Simulation of the proton transport in matter
%J Matematičeskoe modelirovanie
%D 2020
%P 129-142
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/
%G ru
%F MM_2020_32_2_a7
M. B. Markov; S. V. Podolyako. Simulation of the proton transport in matter. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 129-142. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a7/

[1] Vladimir E. Fortov, Extreme States of Matter. High Energy Density Physics, Springer Series in Material Science, 2016 | Zbl

[2] G. Watkin's, Radiation Damage in Semiconductors, Academic Press, N.Y., 1965

[3] W. Shockley, W. T. Read, “Statistics of Recombination of Holes and Electrons”, Phys. Rev., 87:5 (1952), 835–842 | DOI | MR | Zbl

[4] M. Hirata, H. Saito, “The Interaction of Point Defects with Impurities in Silicon”, J. Phys. Soc. Jap., 27:2 (1969), 405–414 | DOI

[5] K. Nakashima, Y. Inuishi, “Studies of Recombination Centers in Gamma-Irradiated p-Type Silicon”, J. Phys. Soc. Jap., 29:6 (1970), 1500–1512 | DOI

[6] T. C. May, M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories”, IEEE Transactions on Electron Devices, 26:1 (1979), 2–9 | DOI

[7] J. B. Reagan, R. E. Meyerott, E. E. Gaines, R. W. Nightingale, P. C. Filhert, W. L. Imhof, “Space charging currents and their effects on spacecraft systems”, IEEE Trans. Electrical Insul., 8:3 (1983), 354–365 | DOI

[8] A. R. Frederickson, L. Levy, C. L. Enloe, “Radiation-induced electrical discharges in complex structures”, IEEE Trans. Electr. Insulation, 27:6 (1992), 1166–1178 | DOI | MR

[9] A. A. Prianichnikov, A. P. Cherniaev, V. S. Khoroshkov, Vvedenie v fiziku i tekhniku protonnoi terapii, Ucheb.posobie, OOP fizicheskogo fakulteta MGU, M., 2019, 104 pp.

[10] B. Carlson, and G. Bell, “Solution of the Transport Equation by the SN method”, Proc. U.N. Intl. Conf. Peaceful Uses of Atomic Energy, 1958 | MR

[11] B. G. Karlson, K. D. Latrop, “Transport Theory: The Method of Discrete Ordinates”, Computing Methods in Reactor Physics, eds. Greenspan H., Kelber C. N., Okrent D., Gordon and Breech, New York, 167–265 | MR

[12] T. A. Germogenova, “Local properties of the solution of the transport equation”, Dokl. Akad. Nauk SSSR, 187:5 (1969), 978–981 | Zbl

[13] T. A. Germogenova, O. V. Nikolaeva, “Coarse-grid approximations of the radiation transport equation: problems with substantial absorption”, Comp. Math. Math. Phys., 41:4 (2001), 581–601 | MR | Zbl

[14] O. V. Nikolaeva, “Nodal scheme to the radiation transport equation on unstructured thetrahedral mesh”, Math. Mod. Comput. Simul., 7:6 (2015), 581–592 | DOI | MR

[15] M. E. Zhukovskii, S. V. Podolyako, R. V. Uskov, “Model of individual collisions for description of electron transport in matter”, Math. Models Comp. Simul., 4:1 (2012), 101–109 | DOI

[16] The Official Geant4 Site, http://geant4.cern.ch/

[17] The Official FLUKA Site, http://www.fluka.org

[18] N. F. Mott, H. S. W. Massey, The theory of atomic collisions, Clarendon Press, Oxford, 1965

[19] H. S. W. Massey, E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Clarendon Press, Oxford, 1969

[20] M. Gryzinski, “Classic Theory of Electronic and Ionic Inelastic Collisions”, Phys. Rev., 115 (1959), 374–383 | DOI | MR | Zbl

[21] L. D. Landau, E. M. Lifshitz, Physical Kinetics, Course of Theoretical Physics S, 10, First edition, Pergamon Press Ltd, 1981, 452 pp. | MR

[22] J. I. Janni, “Proton range-energy tables, 1 keV-10 GeV Energy Loss, Range, Path Length, Time-of-Flight, Straggling, Multiple Scattering, and Nuclear Interaction Probability”, Atom Data and Nucl. Data Tabl., 27 (1982), 147–339 | DOI

[23] B. Rossi, High Energy Particles, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1952

[24] M. B. Markov, S. V. Podoliako, “Modelirovanie perenosa protonov v priblizhenii nepreryvnogo zamedleniia”, Preprinty IPM im. M.V. Keldysha, 2018, 259, 20 pp. | MR

[25] G. Moliere, “Theorie der Streuung schneller geladener Teilchen I: Einzelstreuung am abgeschirmten Coulomb-Feld”, Z. f. Naturforsch, A2, 133 (1947) | Zbl

[26] M. Herman, A. Trkov (ed.), ENDF-6 Formats Manual, Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII, CSEWG Document ENDF-102, BNL-90365–2009 Rev. 1, Brookhaven National Laboratory, July 2010

[27] V. S. Barashenkov, Secheniia vzaimodeistviia chastits i iader s iadrami, OIIaI, Dubna, 1993, 346 pp.

[28] V. P. Zagonov, M. E. Zhukovskii, S. V. Podoliako, M. V. Skachkov, G. R. Tillak, K. Bellon, “Primenenie poverkhnostno orientirovannogo opisaniia obieektov dlia modelirovaniia transformatsii rentgenovskogo izlucheniia v zadachakh vychislitelnoi diagnostiki”, Matematicheskoe modelirovanie, 16:5 (2004), 103–116

[29] B. C. Antiufeev, “K obosnovaniiu modifikatsii metoda maksimalnogo secheniia”, Vychislitelnye tekhnologii, 17:2 (2012), 13–19 | MR

[30] I. V. Prokhorov, A. S. Zhuplev, “Ob effektivnosti metodov maksimalnogo secheniia v teorii perenosa izlucheniia”, Kompiuter. issledovaniia i modelir., 5:4 (2013), 573–582