Discontinuous Galerkin method with entropic slope limiter for Euler equations
Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 113-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The variation approach to obtaining equations of entropy stable discontinuous Galerkin method is generalized. It is shown how monotonicity property can be incorporated into this approach. As applied to Euler equations, the entropic slope limiter, a new effective approximate method for the problem of the studied approach, is designed. It guarantees monotonicity of the numerical solution, non-negativity of pressure and entropy production for each finite element. This method is successfully tested on some well-known gas dynamics model problems.
Mots-clés : gasdynamic equations
Keywords: discontinuous Galerkin method, tilt limiter, entropic inequality.
@article{MM_2020_32_2_a6,
     author = {M. D. Bragin and Yu. A. Kriksin and V. F. Tishkin},
     title = {Discontinuous {Galerkin} method with entropic slope limiter for {Euler} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--128},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/}
}
TY  - JOUR
AU  - M. D. Bragin
AU  - Yu. A. Kriksin
AU  - V. F. Tishkin
TI  - Discontinuous Galerkin method with entropic slope limiter for Euler equations
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 113
EP  - 128
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/
LA  - ru
ID  - MM_2020_32_2_a6
ER  - 
%0 Journal Article
%A M. D. Bragin
%A Yu. A. Kriksin
%A V. F. Tishkin
%T Discontinuous Galerkin method with entropic slope limiter for Euler equations
%J Matematičeskoe modelirovanie
%D 2020
%P 113-128
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/
%G ru
%F MM_2020_32_2_a6
M. D. Bragin; Yu. A. Kriksin; V. F. Tishkin. Discontinuous Galerkin method with entropic slope limiter for Euler equations. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 113-128. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/

[1] E. Tadmor, “Entropy stable schemes”, Handbook of Numerical Anal., 17 (2016), 467–493 | MR

[2] S. Osher, “Riemann solvers, the entropy condition, and difference approximations”, SIAM J. Numer. Anal., 21 (1984), 217–235 | DOI | MR | Zbl

[3] F. Bouchut, C. Bourdarias, B. Perthame, “A MUSCL method satisfying all the numerical entropy inequalities”, Math. Comput., 65 (1996), 1439–1461 | DOI | MR | Zbl

[4] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems”, Acta Numerica, 2003, 451–512 | DOI | MR | Zbl

[5] F. Ismail, P. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks”, J. Comput. Phys., 228 (2009), 5410–5436 | DOI | MR | Zbl

[6] P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations”, Commun. Comput. Phys., 14:5 (2013), 1252–1286 | DOI | MR | Zbl

[7] U. S. Fjordholm, S. Mishra, E. Tadmor, “Arbitrarily high-order accurate entropy stable es-sentially nonoscillatory schemes for systems of conservation laws”, SIAM J. Numer. Anal., 50:2 (2012), 544–573 | DOI | MR | Zbl

[8] X. Cheng, Y. Nie, “A third-order entropy stable scheme for hyperbolic conservation laws”, J. Hyperbolic Differ. Equ., 13:1 (2016), 129–145 | DOI | MR | Zbl

[9] A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimension-al quasi-gasdynamic system of equations”, Comput. Math. Math. Phys., 57:4 (2017), 706–725 | DOI | DOI | MR | Zbl

[10] G. J. Gassner, A. R. Winters, D. A. Kopriva, “A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations”, Appl. Math. Comput., 272 (2016), 291–308 | MR | Zbl

[11] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 6, Fluid mechanics, Pergamon Press, Oxford, 1987, 554 pp. | MR | Zbl

[12] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated Problems”, Lecture Notes in Mathematics, 1697, 1997, 150–268 | DOI | MR

[13] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Ispolzovanie usrednenii dlia sglazhivaniia reshenii v razryvnom metode Galerkina”, Keldysh Institute preprints, 2017, 089, 32 pp.

[14] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, Mat. Model. and Computer Simulation, 5:4 (2013), 346–349 | DOI | MR | Zbl

[15] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, D. I. Utiralov, “Realizatsiia granichnykh uslovii prilipaniia dlia razryvnogo metoda Galerkina”, Keldysh Institute preprints, 2014, 32, 16 pp. | Zbl

[16] M. E. Ladonkina, V. F. Tishkin, “Godunov method: a generalization using piece-wise polynomial approximations”, Differential Equations, 51:7 (2015), 895–903 | DOI | DOI | MR | Zbl

[17] M. E. Ladonkina, V. F. Tishkin, “On Godunov-type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | DOI | MR | Zbl

[18] V. F. Tishkin, V. T. Zhukov, E. E. Myshetskaya, “Justification of Godunov's scheme in the multidimensional case”, Mat. Model., 8:5 (2016), 548–556 | MR | Zbl

[19] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Verification of an entropic regulariza-tion method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute preprints, 2019, 018, 25 pp.

[20] Y. A. Kriksin, V. F. Tishkin, “Entropic regularization of Discontinuous Galerkin method in one-dimensional problems of gas dynamics”, Keldysh Institute preprints, 2018, 100, 22 pp.

[21] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[22] B. Einfeldt, C. D. Munz, P. L. Roe, B. Sjögreen, “On Godunov-type methods near low densities”, J. Comput. Phys., 92:2 (1991), 273–295 | DOI | MR | Zbl

[23] G. A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Comput. Phys., 27:1 (1978), 1–31 | DOI | MR | Zbl

[24] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54 (1984), 115–173 | DOI | MR | Zbl

[25] A. V. Rodionov, “A comparison of the CABARET and MUSCL-type schemes”, Mat. Model. and Computer Simulation, 6:2 (2014), 203–225 | DOI | MR | Zbl