Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_2_a6, author = {M. D. Bragin and Yu. A. Kriksin and V. F. Tishkin}, title = {Discontinuous {Galerkin} method with entropic slope limiter for {Euler} equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {113--128}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/} }
TY - JOUR AU - M. D. Bragin AU - Yu. A. Kriksin AU - V. F. Tishkin TI - Discontinuous Galerkin method with entropic slope limiter for Euler equations JO - Matematičeskoe modelirovanie PY - 2020 SP - 113 EP - 128 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/ LA - ru ID - MM_2020_32_2_a6 ER -
%0 Journal Article %A M. D. Bragin %A Yu. A. Kriksin %A V. F. Tishkin %T Discontinuous Galerkin method with entropic slope limiter for Euler equations %J Matematičeskoe modelirovanie %D 2020 %P 113-128 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/ %G ru %F MM_2020_32_2_a6
M. D. Bragin; Yu. A. Kriksin; V. F. Tishkin. Discontinuous Galerkin method with entropic slope limiter for Euler equations. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 113-128. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/
[1] E. Tadmor, “Entropy stable schemes”, Handbook of Numerical Anal., 17 (2016), 467–493 | MR
[2] S. Osher, “Riemann solvers, the entropy condition, and difference approximations”, SIAM J. Numer. Anal., 21 (1984), 217–235 | DOI | MR | Zbl
[3] F. Bouchut, C. Bourdarias, B. Perthame, “A MUSCL method satisfying all the numerical entropy inequalities”, Math. Comput., 65 (1996), 1439–1461 | DOI | MR | Zbl
[4] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems”, Acta Numerica, 2003, 451–512 | DOI | MR | Zbl
[5] F. Ismail, P. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks”, J. Comput. Phys., 228 (2009), 5410–5436 | DOI | MR | Zbl
[6] P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations”, Commun. Comput. Phys., 14:5 (2013), 1252–1286 | DOI | MR | Zbl
[7] U. S. Fjordholm, S. Mishra, E. Tadmor, “Arbitrarily high-order accurate entropy stable es-sentially nonoscillatory schemes for systems of conservation laws”, SIAM J. Numer. Anal., 50:2 (2012), 544–573 | DOI | MR | Zbl
[8] X. Cheng, Y. Nie, “A third-order entropy stable scheme for hyperbolic conservation laws”, J. Hyperbolic Differ. Equ., 13:1 (2016), 129–145 | DOI | MR | Zbl
[9] A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimension-al quasi-gasdynamic system of equations”, Comput. Math. Math. Phys., 57:4 (2017), 706–725 | DOI | DOI | MR | Zbl
[10] G. J. Gassner, A. R. Winters, D. A. Kopriva, “A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations”, Appl. Math. Comput., 272 (2016), 291–308 | MR | Zbl
[11] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 6, Fluid mechanics, Pergamon Press, Oxford, 1987, 554 pp. | MR | Zbl
[12] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated Problems”, Lecture Notes in Mathematics, 1697, 1997, 150–268 | DOI | MR
[13] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Ispolzovanie usrednenii dlia sglazhivaniia reshenii v razryvnom metode Galerkina”, Keldysh Institute preprints, 2017, 089, 32 pp.
[14] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, Mat. Model. and Computer Simulation, 5:4 (2013), 346–349 | DOI | MR | Zbl
[15] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, D. I. Utiralov, “Realizatsiia granichnykh uslovii prilipaniia dlia razryvnogo metoda Galerkina”, Keldysh Institute preprints, 2014, 32, 16 pp. | Zbl
[16] M. E. Ladonkina, V. F. Tishkin, “Godunov method: a generalization using piece-wise polynomial approximations”, Differential Equations, 51:7 (2015), 895–903 | DOI | DOI | MR | Zbl
[17] M. E. Ladonkina, V. F. Tishkin, “On Godunov-type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | DOI | DOI | MR | Zbl
[18] V. F. Tishkin, V. T. Zhukov, E. E. Myshetskaya, “Justification of Godunov's scheme in the multidimensional case”, Mat. Model., 8:5 (2016), 548–556 | MR | Zbl
[19] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Verification of an entropic regulariza-tion method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute preprints, 2019, 018, 25 pp.
[20] Y. A. Kriksin, V. F. Tishkin, “Entropic regularization of Discontinuous Galerkin method in one-dimensional problems of gas dynamics”, Keldysh Institute preprints, 2018, 100, 22 pp.
[21] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR
[22] B. Einfeldt, C. D. Munz, P. L. Roe, B. Sjögreen, “On Godunov-type methods near low densities”, J. Comput. Phys., 92:2 (1991), 273–295 | DOI | MR | Zbl
[23] G. A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Comput. Phys., 27:1 (1978), 1–31 | DOI | MR | Zbl
[24] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54 (1984), 115–173 | DOI | MR | Zbl
[25] A. V. Rodionov, “A comparison of the CABARET and MUSCL-type schemes”, Mat. Model. and Computer Simulation, 6:2 (2014), 203–225 | DOI | MR | Zbl