Discontinuous Galerkin method with entropic slope limiter for Euler equations
Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 113-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The variation approach to obtaining equations of entropy stable discontinuous Galerkin method is generalized. It is shown how monotonicity property can be incorporated into this approach. As applied to Euler equations, the entropic slope limiter, a new effective approximate method for the problem of the studied approach, is designed. It guarantees monotonicity of the numerical solution, non-negativity of pressure and entropy production for each finite element. This method is successfully tested on some well-known gas dynamics model problems.
Mots-clés : gasdynamic equations
Keywords: discontinuous Galerkin method, tilt limiter, entropic inequality.
@article{MM_2020_32_2_a6,
     author = {M. D. Bragin and Yu. A. Kriksin and V. F. Tishkin},
     title = {Discontinuous {Galerkin} method with entropic slope limiter for {Euler} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--128},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/}
}
TY  - JOUR
AU  - M. D. Bragin
AU  - Yu. A. Kriksin
AU  - V. F. Tishkin
TI  - Discontinuous Galerkin method with entropic slope limiter for Euler equations
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 113
EP  - 128
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/
LA  - ru
ID  - MM_2020_32_2_a6
ER  - 
%0 Journal Article
%A M. D. Bragin
%A Yu. A. Kriksin
%A V. F. Tishkin
%T Discontinuous Galerkin method with entropic slope limiter for Euler equations
%J Matematičeskoe modelirovanie
%D 2020
%P 113-128
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/
%G ru
%F MM_2020_32_2_a6
M. D. Bragin; Yu. A. Kriksin; V. F. Tishkin. Discontinuous Galerkin method with entropic slope limiter for Euler equations. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 113-128. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a6/