Modeling of a nanosatellite angular motion damping using hysteresis plate
Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 101-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical modeling of the angular motion of a CubeSat type nanosatellite with a passive magnetic attitude control system is carried out. The attitude control system consists of a permanent magnet and hysteresis dampers in the form of a plate or a set of rods. The parameters of hysteresis dampers are studied using laboratory facility. A comparative analysis of the damping time using the plate and a set of rods is presented.
Keywords: nanosatellite, hysteresis damper, angular motion.
@article{MM_2020_32_2_a5,
     author = {D. S. Ivanov and M. Yu. Ovchinnikov and V. I. Penkov and T. A. Ivanova},
     title = {Modeling of a nanosatellite angular motion damping using hysteresis plate},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--112},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a5/}
}
TY  - JOUR
AU  - D. S. Ivanov
AU  - M. Yu. Ovchinnikov
AU  - V. I. Penkov
AU  - T. A. Ivanova
TI  - Modeling of a nanosatellite angular motion damping using hysteresis plate
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 101
EP  - 112
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_2_a5/
LA  - ru
ID  - MM_2020_32_2_a5
ER  - 
%0 Journal Article
%A D. S. Ivanov
%A M. Yu. Ovchinnikov
%A V. I. Penkov
%A T. A. Ivanova
%T Modeling of a nanosatellite angular motion damping using hysteresis plate
%J Matematičeskoe modelirovanie
%D 2020
%P 101-112
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_2_a5/
%G ru
%F MM_2020_32_2_a5
D. S. Ivanov; M. Yu. Ovchinnikov; V. I. Penkov; T. A. Ivanova. Modeling of a nanosatellite angular motion damping using hysteresis plate. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 101-112. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a5/

[1] M. Yu. Ovchinnikov i dr., Magnitnye sistemy orientatsii malykh sputnikov, KIAM, M., 2016, 365 pp.

[2] S. O. Karpenko et al., “Attitude control system of the first Russian nanosatellite TNS-0 No 1”, Cosm. Res., 48:6 (2010), 517–525 | DOI

[3] M. L. Battagliere et al., “Hysteresis rods in the passive magnetic stabilization system for university micro and nanosatellites”, Proceedings of the 59th IAC (Glasgow, UK, 29 September–3 October), 2008, IAC-08.C.1.8, 10 pp.

[4] M. Long et al., “A Cubesat Derived Design for a Unique Academic Research Mission in Earthquake Signature Detection”, 16th Annual/USU Conference on Small Satellites (Logan, Utah US, 12–15 August, 2002), SSC02-IX-6, 17

[5] Y. Tsuda et al., “University of Tokyo's CubeSat Project Its Educational and Technological Significance”, 15th Annual AIAA/USU Conference on Small Satellites (Logan, Utah, 13–16 August, 2001), SSC01-VIIIb-7, 8

[6] F. T. Hennepe, B. T. C. Zandbergen, R. J. Hamann, “Simulation of the Attitude Behaviour and Available Power Profile of the Delfi-C3 Spacecraft with Application of the OpSim Platform”, 1st CEAS European Air and Space Conference (Berlin, Germany, 10–13 September 2007), 9

[7] D. S. Ivanov et al., “Attitude Motion of the TNS-0 No 2 Nanosatellite after Launching from the International Space Station”, Cosmic Research, 57:4 (2019), 272–288 | DOI | DOI

[8] M. F. Barschke, P. Werner, S. Kapitola, “BEESAT-3 commissioning better late than never”, Proceedings of 69th International Astronautical Congress (Bremen, 1–5 October 2018), IAC-18.B4.3.1

[9] D. S. Ivanov, M. Y. Ovchinnikov, V. I. Penkov, “Laboratory study of magnetic properties of hysteresis rods for attitude control systems of minisatellites”, J. Comput. Syst. Sci. Int., 52:1 (2013), 145–164 | DOI | DOI | Zbl

[10] D. S. Ivanov, M. Y. Ovchinnikov, S. S. Tkachev, “Attitude control of a rigid body suspended by string with the use of ventilator engines”, J. Comput. Syst. Sci. Int., 50:1 (2011), 104–116 | DOI | MR | Zbl

[11] D. Bindel et al., “A laboratory facility for verification of control algorithms for a group of satellites”, J. Comput. Syst. Sci. Int., 48:5 (2009) | Zbl

[12] D. S. Ivanov et al., “Laboratory Facility for Microsatellite Mock-up Motion Simulation”, J. Comp. Syst. Sci. Int., 57:1 (2018), 115–130 | DOI | Zbl

[13] D. S. Ivanov et al., “Testing of Attitude Control Algorithms for Microsatellite “Chibis-M” at Laboratory Facility”, J. Comput. Syst. Sci. Int., 51:1 (2012), 106–125 | DOI | Zbl

[14] A. P. Kovalenko, Magnetic control systems for spacecrafts, Mashinostroenie, M., 1975, 600 pp.

[15] V. A. Sarychev, M. Y. Ovchinnikov, Magnitnye sistemy oriyentatsii iskusstvennykh sputnikov Zemli, Itogi Nauk, VINITI, M., 1985, 104 pp.

[16] Berlin Experimental and Educational Satellite (BEESAT-3), (data obrascheniya: 30.07.2019) https://www.raumfahrttechnik.tu-berlin.de/menue/research/current_projects/beesat-3/parameter/en/