Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_2_a4, author = {B. N. Chetverushkin and I. V. Mingalev and E. A. Fedotova and K. G. Orlov and V. M. Chechetkin and V. S. Mingalev}, title = {The calculation of the intrinsic radiation of atmosphere in the general circulation model of the lower and middle atmosphere of the {Earth}}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {77--100}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a4/} }
TY - JOUR AU - B. N. Chetverushkin AU - I. V. Mingalev AU - E. A. Fedotova AU - K. G. Orlov AU - V. M. Chechetkin AU - V. S. Mingalev TI - The calculation of the intrinsic radiation of atmosphere in the general circulation model of the lower and middle atmosphere of the Earth JO - Matematičeskoe modelirovanie PY - 2020 SP - 77 EP - 100 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_2_a4/ LA - ru ID - MM_2020_32_2_a4 ER -
%0 Journal Article %A B. N. Chetverushkin %A I. V. Mingalev %A E. A. Fedotova %A K. G. Orlov %A V. M. Chechetkin %A V. S. Mingalev %T The calculation of the intrinsic radiation of atmosphere in the general circulation model of the lower and middle atmosphere of the Earth %J Matematičeskoe modelirovanie %D 2020 %P 77-100 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_2_a4/ %G ru %F MM_2020_32_2_a4
B. N. Chetverushkin; I. V. Mingalev; E. A. Fedotova; K. G. Orlov; V. M. Chechetkin; V. S. Mingalev. The calculation of the intrinsic radiation of atmosphere in the general circulation model of the lower and middle atmosphere of the Earth. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 77-100. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a4/
[1] Iu. M. Timofeev, A. V. Vasilev, Teoreticheskie osnovy atmosfernoi optiki, Nauka, SPb, 2003, 474 pp. | MR
[2] K. Ia. Kondratev, Aktinometriia, Gidrometeoizdat, L., 1965, 692 pp.
[3] Kuo-Nan Lion, Ah introduction to atmospheric radiation, Academic Press, NY, 1980, 577 pp.
[4] T. A. Sushkevich, Matematicheskie modeli perenosa izlucheniia, BINOM, Laboratoriia znanii, M., 2006, 661 pp.
[5] S. D. Tvorogov, “Some aspects of the problem of representation of the absorption function by a series of exponents”, Atmosph. and oceanic optics, 7:3 (1994), 165–171
[6] S. D. Tvorogov, L. I. Nesmelova, O. B. Rodimova, “Representation of the transmission function by the series of exponents”, Atmosph. and ocean. optics, 9:3 (1996), 239–242
[7] L. I. Nesmelova, O. B. Rodimova, S. D. Tvorogov, “Calculation of transmission functions in near infrared region using series of exponents”, Atmospheric and oceanic optics, 10:12 (1997), 923–927
[8] L. I. Nesmelova, O. B. Rodimova, S. D. Tvorogov, “Application of exponential series to calculation of radiative fluxes in the molecular atmosphere”, Atmospheric and oceanic optics, 12:9 (1999), 735–739
[9] S. D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equation”, Atmospheric and oceanic optics, 12:9 (1999), 730–734
[10] S. D. Tvorogov, O. B. Rodimova, “Calculation of transmission functions at small pressures”, Atmospheric and oceanic optics, 21:11 (2008), 797–803
[11] B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms”, Atmospheric and oceanic optics, 16:3 (2003), 244–246
[12] B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave”, J. Geophys. Res., 109 (2004), D02110 | DOI
[13] B. A. Fomin, P. M. Correa, “A k-distribution technique for radiative transfer simulation in in-homogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave”, J. Geophys. Res., 110 (2005), D02106 | DOI
[14] E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave”, J. Geophys. Res., 102:D14 (1997), 16,663–16,682
[15] S. Cusack, J. M. Edwards, J. M. Crowther, “Investigating k-distributing method for parametrizing gaseous absorption in the Hadley Centre Climate Model”, J. Geophys. Res., 104 (1999), 2051–2057 | DOI
[16] T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, T. Kimura, “Modeling of the radia-tion process in an atmospheric general circulation model”, Appl. Opt, 39 (2000), 4869–4878 | DOI
[17] R. J. Hogan, “The Full-Spectrum Correlated-k Method for Longwave Atmospheric Radiative Transfer Using an Effective Planck Function”, J. Atmos. Sciences, 2010
[18] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 204 pp.
[19] A. V. Shilkov, M. N. Gerthev, “Verification of the Lebesgue averaging method”, Mathematical Models and Computer Simulations, 8:2 (2016), 93–107 | DOI | MR | MR | Zbl
[20] B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, O. V. Mingalev, “Gas-Dynamic General Circulation Model of the Lower and Middle Atmosphere of the Earth”, Math. Mod. and Comp. Simulat., 10:2 (2018), 176–185 | DOI | MR
[21] I. V. Mingalev, E. A. Fedotova, K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth's lower and middle atmosphere”, Atmospheric and Oceanic Optics, 31:6 (2018), 582–589 | DOI | MR
[22] L. S. Rothman et al, “The HITRAN2012 molecular spectroscopic database”, J. Quant. Spectrosc. Rad. Transfer., 130 (2013), 4–50 | DOI
[23] E. J. Mlawer et al., “Development and recent evaluation of the MT CKD model of continuum absorption”, Phylosophical Transactions of the Royal Society, 370 (2012), 2520–2556 | DOI
[24] N. I. Ignat'ev, I. V. Mingalev, A. V. Rodin, E. A. Fedotova, “A New Version of the Discrete Ordinate Method for the Calculation of the Intrinsic Radiation in Horizontally Homogeneous Atmospheres”, Comp. Math. and Math. Physics, 55:10 (2015), 1713–1726 | DOI | MR | Zbl
[25] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Gl. red. fiz.-mat. lit. izd.-va Nauka, M., 1978, 592 pp.
[26] I. V. Mingalev, E. A. Fedotova, K. G. Orlov, “Vliianie opticheski tolstykh sloev na nagrev atmosfery sobstvennym izlucheniem”, Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa, 14:5 (2017), 100–108
[27] R. A. McClatchey, H. J. Bolle, K. Ya. Kondratyev, A preliminary cloudless standard atmosphere for radiation computation, World Climate Research Programme, WCP112, WMO/TD No 24, International Association For Meteorology And Atmospheric Physics, Radiation Commission, 1986, 60 pp.
[28] V. A. Gasilov, P. A. Kuchugov, O. G. Olkhovskaya, B. N. Chetverushkin, “Solution of the self-adjoint radiative transfer equation on hybrid computer systems”, Comput. Math. Math. Phys., 56:6 (2016), 987–995 | DOI | DOI | MR | Zbl