Numerical modelling of electroacoustic logging including Joule heating
Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 58-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modification of Pride equations, describing the interrelated process of acoustic and electromagnetic waves’ propagation in saturated porous medium, arising due to the electrokinetic effect, is proposed. This modification allows taking into account Joule heating during the propagation of acoustic oscillations, generated by electromagnetic source, and is implemented by adding “thermoelastic terms” into the state equations for porous fluid and medium. Temperature change is determined by heat conduction equation. Method of constructing of corresponding finite-difference scheme in axially symmetric case is described. The results of numerical simulations are presented, which showed that at low frequencies the Stoneley wave can be used to estimate formation permeability, and the fast acoustic wave can be used at high frequencies, when the influence of Joule heating can be neglected. However, if the conductivity of porous or especially borehole fluid is high enough, then the thermoelastic wave arises due to Joule heating, taking into account the contribution of which is difficult task due to the nonlinearity of such effect.
Keywords: electrokinetic effect, Joule heating, numerical modelling, electro-acoustic logging.
@article{MM_2020_32_2_a3,
     author = {B. D. Plyushchenkov and A. A. Nikitin},
     title = {Numerical modelling of electroacoustic logging including {Joule} heating},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {58--76},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a3/}
}
TY  - JOUR
AU  - B. D. Plyushchenkov
AU  - A. A. Nikitin
TI  - Numerical modelling of electroacoustic logging including Joule heating
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 58
EP  - 76
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_2_a3/
LA  - ru
ID  - MM_2020_32_2_a3
ER  - 
%0 Journal Article
%A B. D. Plyushchenkov
%A A. A. Nikitin
%T Numerical modelling of electroacoustic logging including Joule heating
%J Matematičeskoe modelirovanie
%D 2020
%P 58-76
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_2_a3/
%G ru
%F MM_2020_32_2_a3
B. D. Plyushchenkov; A. A. Nikitin. Numerical modelling of electroacoustic logging including Joule heating. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 58-76. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a3/

[1] S. R. Pride, “Governing equations for the coupled electromagnetics and acoustics of porous media”, Phys. Rev. B., Condens. Matter., 50:21 (1994), 15678–15696 | DOI

[2] Z. Zhu, M. W. Haartsen, M. N. Toksöz, “Experimental studies of electrokinetic conversions in fluid-saturated borehole models”, Geophysics, 64:5 (1999), 1349–1356 | DOI

[3] Z. Zhu, M. N. Toksoz, D. R. Burns, “Electroseismic and seismoelectric measurements of rock samples in a water tank”, Geophysics, 73:5 (2008), E153–E164 | DOI

[4] M. G. Markov, V. V. Verzhbitskiy, “Electroseismic waves from acoustic source in a fluid-filled borehole”, 3rd Biot conference (Oklahoma, Norman, 2005), 217–222

[5] B. D. Plyushchenkov, V. I. Turchaninov, “Solution of Pride's equation through potentials”, Int. J. Mod. Phys., 17:6 (2006), 877–908 | DOI | Zbl

[6] W. Guan, H. Hu, X. He, “Finite-difference modeling of the monopole acoustic logs in a hori-zontally stratified porous formation”, J. Acoust. Soc. Am., 125:4 (2009), 1942–1950 | DOI

[7] B. D. Plyushchenkov, A. A. Nikitin, “Quantitative evaluation of formation permeability from acoustic and electric Stoneley waves”, Int. J. Appl. Mechan., 2:3 (2010), 585–615 | DOI

[8] D. L. Johnson, T. J. Plona, H. Kojima, “Acoustic properties of water-saturated porous media”, J. Appl. Phys, 78:1 (1994), 115–125 | DOI

[9] J. H. Rosenbaum, “Synthetic microseismograms: logging in porous formation”, Geophysics, 39:1 (1974), 14–32 | DOI

[10] D. P. Schmitt, “Effects of radial layering when logging in saturated porous formations”, J. Acoust. Soc. Am., 84:6 (1988), 2200–2214 | DOI

[11] K. M. Tubman, C. H. Cheng, M. N. Tokzöz, “Synthetic full-waveform acoustic logs in cased boreholes”, Geophysics, 49 (1984), 1051–1059 | DOI

[12] M. D. Sharma, M. L. Gogna, “Seismic wave propagation in a viscoelastic porous solid satu-rated by viscous fluid”, Pure and Applied Geophysics, 135 (1991), 383–400 | DOI

[13] H. Hu, W. Guan, J. M. Harris, “Theoretical simulation of electroacoustic borehole logging in a fluid-saturated porous formation”, J. Acoust. Soc. Am., 122:1 (2007), 135–145 | DOI

[14] W. Guan, H. Hu, “Finite-difference modeling of the electroseismic logging in a fluid-satura-ted porous formation”, J. Comput. Phys., 227:11 (2008), 5633–5648 | DOI | MR | Zbl

[15] B. D. Plyushchenkov, V. I. Turchaninov, “Acoustic logging modelling by refined Biot's equations”, Int. J. Mod. Phys., 11:2 (2000), 65–396 | DOI

[16] B. D. Plyushchenkov, V. I. Turchaninov, “Constructions principles of the efficient finite dif-ference scheme for the refined Biot's equations”, Poromechanics, v. II, eds. Auriault et al., Swets Zeitlinger, Lisse, 2002, 753–756

[17] B. D. Plyushchenkov, V. I. Turchaninov, “Optimum approximation of convolution of arbitrary grid function with the power kernel”, Poromechanics, v. II, eds. Auriault et al., Swets Zeitlinger, Lisse, 2002, 757–764

[18] B. D. Pliushchenkov, V. I. Turchaninov, “Poshagovaia svertka”, Keldysh Institute preprints, 2009, 024, 24 pp.

[19] H. L. Liu, D. L. Johnson, “Effects of elastic membrane on tube wave in permeable formation”, J. Acoust. Soc. Am., 101:6 (1997), 3322–3329 | DOI

[20] M. A. Biot, “Mechanics of Deformation and Acoustic Propagation in Porous Media”, J. Appl. Phys., 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[21] D. L. Johnson, J. Koplik, R. Dashen, “Theory of dynamic permeability and tortuosity in fluid-saturated porous media”, J. Fluid Mech., 176 (1987), 379–402 | DOI | Zbl

[22] M. A. Biot, “Thermoelasticity and Irreversible Thermodynamics”, J. Appl. Phys., 27:3 (1956), 240–253 | DOI | MR | Zbl

[23] J. C. Bacri, D. Salin, “Sound velocity of sandstone saturated with oil and brine at different concentrations”, Geophys. Research Lett., 13:4 (1986), 326–328 | DOI

[24] S. R. Pride, F. Morgan, “Electrokinetic dissipation induced by seismic waves”, Geophysics, 56 (1991), 914–925 | DOI

[25] D. B. Pengra, S. Xi. Li, Po-zen Wong, “Determination of rock properties by low-frequency AC electrokinetics”, J. of Geophys. Research, 104:B12 (1999), 29,485–29,508

[26] C. J. Randall, D. J. Scheibner, P. T. Wu, “Multipole borehole acoustic waveforms: Synthetic logs with beds and borehole washouts”, Geophysics, 56:11 (1991), 1757–1769 | DOI

[27] B. D. Plyushchenkov, V. I. Turchaninov, A. A. Nikitin, “Modeling Seismic-Acoustic Fields in Axisymmetric Absorbing Media: the Finite Difference Scheme”, Mathematical Models and Computer Simulations, 10:6 (2018), 681–694 | DOI | MR

[28] A. V. Berezin, A. A. Kryukov, B. D. Plyushchenkov, “Metod vychislenia electromagnitnogo polia s zadannym volnovym frontom”, Matemat. modelir, 23:3 (2011), 109–126 | MR | Zbl

[29] A. A. Samarskii, The theory of difference schemes, Marcel Dekker, Inc., New York–Basel, 2001, 761 pp. | MR | MR | Zbl

[30] V. S. Ryaben'kii, Method of difference potentials and its applications, Springer Verlag, 2002, 538 pp. | MR | Zbl

[31] T. Wang, X. M. Tang, “Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach”, Geophysics, 68:5 (2003), 1749–1755 | DOI

[32] D. Brie, T. Endo, D. L. Johnson, F. Pampuri, “Quantitative formation permeability evaluation from Stoneley waves”, SPE, 49131 (1998), 12