Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_2_a2, author = {M. G. Kreines and E. M. Kreines}, title = {Matrix text models. {Text} corpora models}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {37--57}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a2/} }
M. G. Kreines; E. M. Kreines. Matrix text models. Text corpora models. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 37-57. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a2/
[1] W. B. Croft, D. Metzler, T. Strohman, Search engines: Information retrieval in practice, Addison-Wesley, Boston, 2010, 542 pp.
[2] W. Wu, H. Xiong, Sh. Shekhar, Clustering and Information Retrieval, Network Theory, Applications, 11, Springer, N. Y., 2004, 338 pp. | MR
[3] H. Alani, S. Kim, D. E. Millard, M. J. Weal, W. Hall, P. H. Lewis, N. R. Shadbolt, “Automatic ontology-based knowledge extraction from Web documents”, IEEE Intelligent Systems, 18:1 (2003), 14–21 | DOI
[4] N. V. Lukashevich, Tezaurusy v zadachah informatsionnogo poiska, MGU, M., 2011, 512 pp.
[5] T. K. Landauer, D. S. McNamara, S. Dennis, W. Kintsch (eds.), Handbook of Latent Semantic Analysis, Psychology Press, Hove, 2013, 544 pp.
[6] D. M. Blei, “Probabilistic topic models”, Communicat. of the ACM, 55:4 (2012), 77–84 | DOI | MR
[7] K. V. Vorontsov, “Additive Regularization for Topic Models of Text Collections”, Doklady Mathemaics, 89:3 (2014), 301–304 | DOI | DOI | MR | Zbl
[8] M. J. Kusner, Y. Sun, N. I. Kolkin, K. Q. Weinberger, “From Word Embeddings To Document Distances”, Proc. of the 32nd Int. Conf. on Machine Learning (Lille, France, 2015), JMLR: W, 37, 2015, 957–966
[9] M. G. Kreines, E. M. Kreines. Matrix text models, “Text models and similarity of text contents”, MM, 2020 | DOI
[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, “Distributed representations of words and phrases and their compositionality”, Advances in neural information processing systems, 2013, 3111–3119
[11] I. S. Misuno, D. A. Rachkovskii, S. V. Slipchenko, “Vektornye i raspredelennye predstavleniia, otrazhaushchie mery semanticheskoi sviazi slov”, Matemathchni mashini i sistemi, 3 (2005), 50–66
[12] Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, “A neural probabilistic language model”, Journal of Machine Learning Research, 3 (2003), 1137–1155 | Zbl
[13] Q. Le, T. Mikolov, “Distributed representations of sentences and documents”, Proc. of the 31-st Int. Conf. on Machine Learning (Beijing, China, 2014), JMLR: W, 32, 1188–1196, arXiv: 1405.4053v2
[14] M. G. Kreines, A. A. Afonin, “Klasterizatsiia tekstovykh kollektsii: pomoshch pri soderzha-telnom poiske i analiticheskii instrument”, Internet-portaly: soderzhanie i tekhnologii, 4, FGU GNII ITT “Informika”, eds. A.N. Tikhonov (pred.) i dr., Prosveshenie, M., 2007, 510–537
[15] M. G. Kreines, “Modeli tekstov i tekstovyh kolliktsii dlia poiska i analyza informatsii”, Trudy MFTI, 3 (2017), 132–142
[16] M. G. Kreines, E. M. Kreines, “The control model for the selection of reference collections providing the impartial assessment of the quality of scientific and technological pub-lications by using bibliometric and scientometric indicators”, J. of Comp. and Systems Sci. Intern., 55:5, 750–766 | DOI | MR | Zbl
[17] D. Mimno, H. Wallach, E. Talley, M. Leenders, A. McCallum, “Optimizing semantic coherence in topic models”, Proc. of the 2011 Conf. on Empirical Methods in Natural Language Processing (Edinburgh, Scotland, UK, July 27–31, 2011), 262–272
[18] D. Newman, J. H. Lau, K. Grieser, T. Baldwin, “Automatic evaluation of topic coherence”, Human Language Technologies, The 2010 Annual Conf. of the North American Chapter of the ACL (Los Angeles, California, 2010), 100–108
[19] D. Newman, Y. Noh, E. Talley, S. Karimi, T. Baldwin, “Evaluating topic models for digital libraries”, Proc. of the 10th ann.Joint Conf. on Digital libraries, JCDL'10, ACM, New York, NY, USA, 2010, 215–224
[20] K. V. Vorontsov, A. A. Potapenko, Additivnaia reguliarizatsiia tematicheskih modelei, 2014, 22 pp.
[21] J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, D. M. Blei, “Reading tea leaves: How humans interpret topic models”, NIPS 2009, 288–296
[22] M.G. Kreines, E.M. Kreines, “Control model for the alignment of the quality assessment of scientific documents based on the analysis of content-related context”, J. of Computer and Systems Sciences International, 55:6, 938–947 | DOI | MR