Set of coupled suspended matter transport models including three-dimensional hydrodynamic processes in the coastal zone
Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Calculations require consideration multi-scale turbulence, sedimentation of suspensions, adhesion conditions for suspended particles at the water-bottom interface, jet effects, and salvo discharge of soil, which will allow more accurately assess the spatial distribution of concentrations of pollutants and the size of their impact zones, according to the requirements for models for calculating the volumes and areas of water pollution zones with suspended matter and other impurities. This paper describes an improved complex of coupled models of transport of suspended matter and sediment, taking into account the dynamic changes in the computational domain, changes in the density of the medium due to the presence of suspensions and their multicomponent character. Model has been developed for calculating the pollution zones with suspended matter in the presence of wave processes, in which the dynamic rebuilding of the computational domain occurs not only due to a change in the geometry of the level elevation function, but also due to a change in the bottom relief as a result of sedimentation of suspensions.
Mots-clés : multi-scale turbulence, spatial distribution of pollutant concentrations.
Keywords: jet effects, multicomponent impurities
@article{MM_2020_32_2_a0,
     author = {A. I. Sukhinov and A. E. Chistyakov and E. A. Protsenko and V. V. Sidoryakina and S. V. Protsenko},
     title = {Set of coupled suspended matter transport models including three-dimensional hydrodynamic processes in the coastal zone},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_2_a0/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. E. Chistyakov
AU  - E. A. Protsenko
AU  - V. V. Sidoryakina
AU  - S. V. Protsenko
TI  - Set of coupled suspended matter transport models including three-dimensional hydrodynamic processes in the coastal zone
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 3
EP  - 23
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_2_a0/
LA  - ru
ID  - MM_2020_32_2_a0
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. E. Chistyakov
%A E. A. Protsenko
%A V. V. Sidoryakina
%A S. V. Protsenko
%T Set of coupled suspended matter transport models including three-dimensional hydrodynamic processes in the coastal zone
%J Matematičeskoe modelirovanie
%D 2020
%P 3-23
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_2_a0/
%G ru
%F MM_2020_32_2_a0
A. I. Sukhinov; A. E. Chistyakov; E. A. Protsenko; V. V. Sidoryakina; S. V. Protsenko. Set of coupled suspended matter transport models including three-dimensional hydrodynamic processes in the coastal zone. Matematičeskoe modelirovanie, Tome 32 (2020) no. 2, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2020_32_2_a0/

[1] I. I. Kovtun, E. A. Protsenko, A. I. Sukhinov, A. E. Chistyakov, “Raschet vozdeistviia na vodnye bioresursy dnouglubitelnykh rabot v Belom more”, Fundamentalnaia i prikladnaia gidrofizika, 9:2 (2016), 27–98

[2] A. S. Monin, “Turbulence and microstructure in the ocean”, Physics-Uspekhi, 16:1 (1973), 121–131 | DOI | DOI

[3] Yu.I. Shokin, L.B. Chubarov, An.G. Marchuk, K.V. Simonov, Vychislitelnyi eksperiment v probleme tsunami, Nauka. Sib. otd., Novosibirsk, 1989, 164 pp. | MR

[4] O. M. Belotserkovskiy, Turbulentnost: novye podkhody, Nauka, M., 2003, 286 pp.

[5] A. Sukhinov, A. Chistyakov, V. Sidoryakina, “Investigation of nonlinear 2D bottom transportation dynamics in coastal zone on optimal curvilinear boundary adaptive grids”, MATEC Web of Conferences, 132 (2017), 04003 | DOI

[6] V. V. Sidoryakina, S. V. Protsenko, “The dynamics of impurity distribution in marine systems”, MATEC Web Conf. International Scientific-Technical Conference «Dynamic of Technical Systems» (DTS-2018)

[7] O. M. Belotserkovskii, V. A. Gushchin, V. V. Shchennikov, “Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid USSR”, Computational Mathematics and Mathematical Physics, 15:1 (1975), 190–200 | DOI

[8] O. M. Belotserkovskiy, V. A. Gushchin, V. N. Kon'shin, “The splitting method for investigating flows of a stratified liquid with a free surface”, USSR Computational Mathematics and Mathematical Physics, 27:2 (1987), 181–191 | DOI | MR

[9] A. V. Nikitina, M. V. Puchkin, I. S. Semenov, A. I. Sukhinov, G. A. Ugolnitskii, A. B. Usov, A. E. Chistiakov, “Differentsialno-igrovaia model predotvrashcheniia zamorov v melkovodnykh vodoemakh”, Upravlenie bolshimi sistemami, 55 (2015), 343–361

[10] A. I. Sukhinov, A. E. Chistyakov, E. V. Alekseenko, “Numerical Realization of the Three-Dimensional Model of Hydrodynamics for Shallow Water Basins on a High-Performance System”, Mathematical Models and Computer Simulations, 3:5 (2011), 562–574 | DOI | MR | Zbl

[11] A. I. Sukhinov, A. Ye. Chistyakov, N. A. Fomenko, “Metodika postroyeniia raznostnykh skhem dlia resheniia zadach diffuzii-konvektsii-reaktsii, uchityvaiushchikh stepen zapolnennosti kontrolnykh yacheek”, Izvestiia YUFU. Tekhnicheskie nauki, 2013, no. 4 (141), 87–98

[12] A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, V. V. Sidoryakina, S. V. Protsenko, “Accounting method of filling cells for the hydrodynamics problems solution with complex geometry of the computational domain”, MM, 12:2 (2020) | DOI | MR

[13] B. N. Chetverushkin, M. V. Yakobovskiy, “Vychislitelnyye algoritmy i arkhitektura sistem vysokoy proizvoditelnosti”, Preprinty IPM im. M.V. Keldysha, 2018, 052, 12 pp.

[14] D. P. Grigorevykh, N. I. Khokhlov, I. B. Petrov, “Raschet dinamicheskogo razrusheniia v tverdykh deformiruemykh telakh”, Matem. modelirovanie, 29:4 (2017), 45–58 | MR

[15] I. B. Petrov, A. V. Favorskaya, N. I. Khokhlov, “Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves”, Comput. Math. Math. Phys., 57:11 (2017), 1771–1777 | DOI | DOI | MR | Zbl

[16] K. A. Beklemysheva, A. V. Vasyukov, I. B. Petrov, “Numerical simulation of dynamic processes in biomechanics using the grid-characteristic method”, Comput. Math. Math. Phys., 55:8 (2015), 1346–1355 | DOI | DOI | MR | Zbl

[17] A. A. Samarskii, The theory of difference schemes, Marcel Dekker, Inc., NY-Basel, 2001, 761 pp. | MR | MR | Zbl

[18] A. A. Samarskiy, P. N. Vabishchevich, Chislennye metody resheniia zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 247 pp.

[19] A. A. Samarskiy, Ye. S. Nikolayev, Metody resheniia setochnykh uravnenii, Nauka, M., 1978, 592 pp.

[20] A. I. Sukhinov, A. E. Chistyakov, “Adaptive Modified Alternating Triangular Iterative Method for Solving Grid Equations with a Non-Self-Adjoint Operator”, Mathematical Models and Computer Simulations, 4:4 (2012), 398–409 | DOI | MR | Zbl

[21] A. I. Sukhinov, A. E. Chistyakov, E. F. Timofeeva, A. V. Shishenya, “Mathematical model for calculating coastal wave processes”, Mathematical Models and Computer Simulations, 5:2 (2013), 122–129 | DOI | MR

[22] A. I. Sukhinov, A. A. Sukhinov, “Reconstruction of 2001 Ecological Disaster in the Azov Sea on the Basis of Precise Hydrophysics Models”, Parallel Computational Fluid Dynamics 2004. Multidisciplinary Applications, 2005, 231–238 | DOI

[23] V. A. Gushchin, A. I. Sukhinov, A. E. Chistyakov, S. V. Protsenko, “The three-dimensional mathematical model for numerical investigation of coastal wave processes”, 18th International Scientific Conference on Earth Geo Sciences (SGEM 2018) (30.06.2018–08.07.2018, Albena Resort, Bulgaria), Informatics, Geoinformatics and Remoute Sensing, 18, no. 2.2, 499–506 | DOI | MR

[24] A. I. Sukhinov, A. E. Chistyakov, A. V. Shishenya, E. F. Timofeeva, “Predictive Modeling of Coastal Hydrophysical Processes in Multiple-Processor Systems Based on Explicit Schemes”, Mathematical Models and Computer Simulations, 10:5 (2018), 648–658 | DOI | DOI | MR | MR | Zbl