Modeling evolution sample distributions of random quantities by the equation of Liuville
Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 111-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The difference approximation of the one-dimensional Liouville equation for the sample distribution density of the non-stationary time series estimated by the histogram is considered. We prove a necessary and sufficient condition that the change in the sample density of the distribution over a certain period of time can be modeled as the evolution of the density according to the Liouville equation. This condition is a strong positivity of the initial density distribution in the inner class intervals. The determination of the corresponding velocity algorithm is constructed and its mechanical-statistical meaning is shown as a semigroup equivalent in Chernoff sense to the average semigroup, generating the evolution of the distribution function.
Mots-clés : Liouville equation
Keywords: non-stationary time series, sample distribution function, Chernoff equivalence.
@article{MM_2020_32_1_a7,
     author = {A. A. Kislitsin and Yu. N. Orlov},
     title = {Modeling evolution sample distributions of random quantities by the equation of {Liuville}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--128},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_1_a7/}
}
TY  - JOUR
AU  - A. A. Kislitsin
AU  - Yu. N. Orlov
TI  - Modeling evolution sample distributions of random quantities by the equation of Liuville
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 111
EP  - 128
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_1_a7/
LA  - ru
ID  - MM_2020_32_1_a7
ER  - 
%0 Journal Article
%A A. A. Kislitsin
%A Yu. N. Orlov
%T Modeling evolution sample distributions of random quantities by the equation of Liuville
%J Matematičeskoe modelirovanie
%D 2020
%P 111-128
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_1_a7/
%G ru
%F MM_2020_32_1_a7
A. A. Kislitsin; Yu. N. Orlov. Modeling evolution sample distributions of random quantities by the equation of Liuville. Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/MM_2020_32_1_a7/

[1] V. S. Koroliuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Spravochnik po teorii veroiatnostei i matematicheskoi statistike, Nauka, M., 1985, 640 pp. | MR

[2] N. Sh. Kremer, B. A. Putko, Ekonometrika, IuNITI-DANA, M., 2002, 311 pp.

[3] Iu. P. Lukashin, Adaptivnye metody prognozirovaniia ekonomicheskikh pokazatelei, «Statistika», M., 1979

[4] Iu. N. Orlov, K. P. Osminin, “Postroenie vyborochnoi funktsii raspredeleniia dlia prognozirovaniia nestatsionarnogo vremennogo riada”, Matematicheskoe modelirovanie, 20:9 (2008), 23–33 | MR | Zbl

[5] A. D. Bosov, R. Sh. Kalmetev, Iu. N. Orlov, “Modelirovanie nestatsionarnogo vremennogo riada s zadannymi svoistvami vyborochnogo raspredeleniia”, Matematicheskoe modelirovanie, 26:3 (2014), 97–107 | Zbl

[6] Iu. N. Orlov, Kineticheskie metody issledovaniia nestatsionarnykh vremennykh riadov, MFTI, M., 2014, 276 pp.

[7] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978, 512 pp.

[8] A. A. Samarskii, P. N. Vabishchevich, “Nelineinye monotonnye skhemy dlia uravneniia perenosa”, DAN, 361:1 (1998), 21–23 | MR

[9] M. P. Galanin, “Chislennoe reshenie uravneniia perenosa”, Budushchee prikladnoi matematiki. Lektsii dlia molodykh issledovatelei, ed. G.G. Malinetskii, Editorial URSS, M., 2005, 78–116

[10] P. R. Chernoff, “Note on Product Formulas for Operator Semigroups”, J. Funct. Anal., 84 (1968), 238–242 | DOI | MR

[11] O. G. Smolyanov, H. Weizsacker, O. Wittin, “Chernoff's theorem and discrete time approxi-mation of Brownian motion on manifolds”, Potential Anal., 26 (2007), 1–29 | DOI | MR | Zbl

[12] Iu. N. Orlov, V. Zh. Sakbaev, O. G. Smolianov, “Formuly Feinmana kak metod usredneniia sluchainykh gamiltonianov”, Trudy MIRAN, 285, 2014, 232–243 | DOI | Zbl