On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance
Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 100-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents the results of mathematical modeling of the flow of electric current in a lamellar graphite polycrystal in a magnetic field. In contrast to the simple model, taking into account only the contact resistance between the scales, this model also takes into account the ohmic resistance along and across the layers of graphite based on the chain model of the flow of electric current in a polycrystal of graphite. As a result, a formula with refined correction coefficients was obtained, which allows one to choose polycrystal parameters for calculating the temperature dependence of the resistivity and magnetoresistance. A comparison is made with a simple model that takes into account only contact resistance, the difference is up to 50 % from the previous estimate. The difference is explained by the peculiarities of the connection of crystallites in a polycrystal. This allows analyzing the size of the crystallites and their connections in artificial graphite on the basis of its electrophysical properties.
Keywords: artificial graphite, magnetoresistance, mosaic blocks, anisometry, chain model, Fourier method, bondary-value problem.
@article{MM_2020_32_1_a6,
     author = {A. V. Dmitriev and A. A. Ershov},
     title = {On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {100--110},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_1_a6/}
}
TY  - JOUR
AU  - A. V. Dmitriev
AU  - A. A. Ershov
TI  - On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 100
EP  - 110
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_1_a6/
LA  - ru
ID  - MM_2020_32_1_a6
ER  - 
%0 Journal Article
%A A. V. Dmitriev
%A A. A. Ershov
%T On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance
%J Matematičeskoe modelirovanie
%D 2020
%P 100-110
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_1_a6/
%G ru
%F MM_2020_32_1_a6
A. V. Dmitriev; A. A. Ershov. On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance. Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 100-110. http://geodesic.mathdoc.fr/item/MM_2020_32_1_a6/

[1] W. N. Reynolds, “Anisotropy factors of polycrystalline graphite”, Carbon, 6:2 (1968), 277–282 | DOI

[2] A. I. Lutkov, V. I. Volga, B. K. Dymov, “Metody opredeleniia srednego razmera kristallitov grafita v bazisnoi ploskosti”, Zavodskaia laboratoriia, 1973, no. 10, 1201–1203

[3] D. F. Pedraza, P. G. Klements, “Effective conductivity of polycrystalline graphite”, Carbon, 31:6 (1993), 951–956 | DOI

[4] N. Iwashita, H. Imagawa, W. Nishiumi, “Variation of temperature dependence of electrical resistivity with crystal structure of artificial graphite products”, Carbon, 61 (2013), 603–608 | DOI

[5] A. V. Dmitriev, “Calculation of mosaic block sizes in artificial graphites from magnetoresistance”, Solid Fuel Chem., 46:3 (2012), 310–314 | DOI

[6] A. V. Dmitriev, A. A. Ershov, “Modeling of the electric current flow in artificial graphite”, Math. Models Comput. Simul, 9:3 (2017), 318–327 | DOI | MR

[7] A. V. Dmitriev, A. A. Ershov, “Electrophysical properties of composition based on natural flake graphite and binder”, Solid Fuel Chem., 45:6 (2011), 411–417 | DOI | Zbl

[8] A. A. Ershov, “On measurement of electrical conductivity”, Comput. Math. Math. Phys, 53:6 (2013), 823–826 | DOI | DOI | MR | Zbl

[9] A. V. Dmitriev, Nauchnye osnovy razrabotki sposobov snizheniia udelnogo elektricheskogo soprotivleniia grafitirovannykh elektrodov, Izd-vo ChGPU, Cheliabinsk, 2005, 198 pp.

[10] C. A. Klein, “Pyrolytic graphite”, J. Applied physics, 33:11 (1962), 3338–3351 | DOI

[11] I. L. Spain, “The electrical properties of graphite”, Chemistry and physics of carbon, 8 (1973), 1–50

[12] V.I. Sosedov (red.), Svoistva konstruktsionnykh materialov na osnove ugleroda, Spravochnik, Metallurgiia, M., 1975, 334 pp.

[13] A. V. Dmitriev, A. I. Lutkov, “Kontaktnoe elektrosoprotivlenie zeren v polikristallicheskom grafite”, Khimiia tverdogo topliva, 1989, no. 6, 134–141

[14] G. H. Kinchin, “The electrical properties of graphite”, Pros. Roy. Soc. London, 217:1128 (1953), 9–19 | DOI