Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_1_a6, author = {A. V. Dmitriev and A. A. Ershov}, title = {On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {100--110}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_1_a6/} }
TY - JOUR AU - A. V. Dmitriev AU - A. A. Ershov TI - On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance JO - Matematičeskoe modelirovanie PY - 2020 SP - 100 EP - 110 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_1_a6/ LA - ru ID - MM_2020_32_1_a6 ER -
%0 Journal Article %A A. V. Dmitriev %A A. A. Ershov %T On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance %J Matematičeskoe modelirovanie %D 2020 %P 100-110 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_1_a6/ %G ru %F MM_2020_32_1_a6
A. V. Dmitriev; A. A. Ershov. On estimation of mosaic block size and flake anisometry of artifical graphite by magnetoresistance. Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 100-110. http://geodesic.mathdoc.fr/item/MM_2020_32_1_a6/
[1] W. N. Reynolds, “Anisotropy factors of polycrystalline graphite”, Carbon, 6:2 (1968), 277–282 | DOI
[2] A. I. Lutkov, V. I. Volga, B. K. Dymov, “Metody opredeleniia srednego razmera kristallitov grafita v bazisnoi ploskosti”, Zavodskaia laboratoriia, 1973, no. 10, 1201–1203
[3] D. F. Pedraza, P. G. Klements, “Effective conductivity of polycrystalline graphite”, Carbon, 31:6 (1993), 951–956 | DOI
[4] N. Iwashita, H. Imagawa, W. Nishiumi, “Variation of temperature dependence of electrical resistivity with crystal structure of artificial graphite products”, Carbon, 61 (2013), 603–608 | DOI
[5] A. V. Dmitriev, “Calculation of mosaic block sizes in artificial graphites from magnetoresistance”, Solid Fuel Chem., 46:3 (2012), 310–314 | DOI
[6] A. V. Dmitriev, A. A. Ershov, “Modeling of the electric current flow in artificial graphite”, Math. Models Comput. Simul, 9:3 (2017), 318–327 | DOI | MR
[7] A. V. Dmitriev, A. A. Ershov, “Electrophysical properties of composition based on natural flake graphite and binder”, Solid Fuel Chem., 45:6 (2011), 411–417 | DOI | Zbl
[8] A. A. Ershov, “On measurement of electrical conductivity”, Comput. Math. Math. Phys, 53:6 (2013), 823–826 | DOI | DOI | MR | Zbl
[9] A. V. Dmitriev, Nauchnye osnovy razrabotki sposobov snizheniia udelnogo elektricheskogo soprotivleniia grafitirovannykh elektrodov, Izd-vo ChGPU, Cheliabinsk, 2005, 198 pp.
[10] C. A. Klein, “Pyrolytic graphite”, J. Applied physics, 33:11 (1962), 3338–3351 | DOI
[11] I. L. Spain, “The electrical properties of graphite”, Chemistry and physics of carbon, 8 (1973), 1–50
[12] V.I. Sosedov (red.), Svoistva konstruktsionnykh materialov na osnove ugleroda, Spravochnik, Metallurgiia, M., 1975, 334 pp.
[13] A. V. Dmitriev, A. I. Lutkov, “Kontaktnoe elektrosoprotivlenie zeren v polikristallicheskom grafite”, Khimiia tverdogo topliva, 1989, no. 6, 134–141
[14] G. H. Kinchin, “The electrical properties of graphite”, Pros. Roy. Soc. London, 217:1128 (1953), 9–19 | DOI