Model of radiation-induced thermo-mechanical effects in heterogeneous fine-dispersed materials
Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 85-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex model for supercomputing the parameters of radiation-induced thermomechanical fields in heterogeneous media of complex dispersed structure is developed. A technique for calculating the parameters of the photon-electron cascade generated in the object by the interaction of radiation with matter is constructed. A geometric model of the medium with a direct resolution of its microstructure is worked out. A part of the geometric description of the medium is a model of the detecting system for the statistical evaluation of the energy deposit of radiation. The basis for calculating thermomechanical processes is the continuum mechanics equations taken in Euler form of conservation laws. The results of trial simulations in the form of calculated thermomechanical field’s are presented.
Keywords: mathematical modeling, ionizing radiation, thermo-mechanical effects, dispersed structure.
@article{MM_2020_32_1_a5,
     author = {V. A. Egorova and F. N. Voronin and M. E. Zhukovskiy and M. B. Markov and A. I. Potapenko and R. V. Uskov and D. S. Boykov},
     title = {Model of radiation-induced thermo-mechanical effects in heterogeneous fine-dispersed materials},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--99},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_1_a5/}
}
TY  - JOUR
AU  - V. A. Egorova
AU  - F. N. Voronin
AU  - M. E. Zhukovskiy
AU  - M. B. Markov
AU  - A. I. Potapenko
AU  - R. V. Uskov
AU  - D. S. Boykov
TI  - Model of radiation-induced thermo-mechanical effects in heterogeneous fine-dispersed materials
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 85
EP  - 99
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_1_a5/
LA  - ru
ID  - MM_2020_32_1_a5
ER  - 
%0 Journal Article
%A V. A. Egorova
%A F. N. Voronin
%A M. E. Zhukovskiy
%A M. B. Markov
%A A. I. Potapenko
%A R. V. Uskov
%A D. S. Boykov
%T Model of radiation-induced thermo-mechanical effects in heterogeneous fine-dispersed materials
%J Matematičeskoe modelirovanie
%D 2020
%P 85-99
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_1_a5/
%G ru
%F MM_2020_32_1_a5
V. A. Egorova; F. N. Voronin; M. E. Zhukovskiy; M. B. Markov; A. I. Potapenko; R. V. Uskov; D. S. Boykov. Model of radiation-induced thermo-mechanical effects in heterogeneous fine-dispersed materials. Matematičeskoe modelirovanie, Tome 32 (2020) no. 1, pp. 85-99. http://geodesic.mathdoc.fr/item/MM_2020_32_1_a5/

[1] M. E. Zhukovskiy, R. V. Uskov, “Hybrid paralleling of the algorithms of radiation cascade transport modelling”, Mathem. Models and Comput. Simulat., 7:6 (2015), 601–610 | DOI | MR

[2] M. E. Zhukovskiy, R. V. Uskov, “Modelirovanie vzaimodeistviia gamma-izlucheniia s veshchestvo na gibridnykh vychislitelnykh sistemakh”, Matematich. modelir., 23:7 (2011), 20–32

[3] M. E. Zhukovskiy, S. V. Podoliako, R. V. Uskov, “Modelirovanie perenosa elektronov v veshchestve na gibridnykh vychislitelnykh sistemakh”, Vychislitelnye metody i programmirovanie, 12:1 (2011), 152–159

[4] V. P. Efremov, A. I. Potapenko, “Thermomechanical processes of composite materials under the action of intense energy fluxes”, High Temperature, 48:6 (2010), 881–886 | DOI

[5] V. A. Egorova, K. K. Inozemceva, M. E. Zhukovskiy, “Podhod k modelirovaniyu radiacionno-inducirovannyh vtorichnyh effektov v slozhnyh tekhnicheskih ob'ektah”, Keldysh Institute preprints, 2018, 110, 24 pp.

[6] V. Egorova, M. Zhukovskiy, “Handling of the radiative electron emission modeling results by use of the neural networks”, Mathematica Montisnigri, XXXVIII (2017), 89–99

[7] T. Mitchell, Machine Learning, McGraw-Hill Science/Engineering/Math, 1997, 432 pp. | Zbl

[8] V. A. Gasilov, G. A. Bagdasarov, A. S. Boldarev, S. V. Diachenko, E. L. Kartasheva, O. G. Olkhovskaia, S. N. Boldyrev, I. V. Gasilova, V. A. Shmyrov, “Sovremennye metody razrabotki programm dlia 3D-modelirovaniia zadach plazmodinamiki (plazmennoi multifiziki)”, Vestnik UGATU. Ser. “Upravlenie, vychislitelnaia tekhnika, i informatika”, 15:5 (45) (2011), 120–129

[9] M. Zhukovskiy, S. Podoliako, G. R. Jaenisch, C. Bellon, U. Samadurau, “Monte Carlo Simulation Tool with CAD Interface”, Review of Progress in Quantitative Nondestructive Evaluation, 25 (2006), 574–579 | DOI

[10] M. E. Zhukovskiy, V. P. Zagonov, S. V. Podoliako, M. V. Skachkov, G. R. Tillak, K. Bellon, “Primenenie poverkhnostno orientirovannogo opisaniia obieektov dlia modelirovaniia transformatsii rentgenovskogo izlucheniia v zadachakh vychislitelnoi diagnostiki”, Matematich. modelirov., 16:5 (2004), 103–116

[11] M. Zhukovskiy, S. Podoliako, G. R. Jaenisch, C. Bellon, “Monte-Carlo-Simulation der Strahlenausbreitung an realen Bauteilgeometrien”, DGZfP-Jahrestagung “ZfP in Forschung, Entwicklung und Anwendung”, DGZfP Berichtsbande (Salzburg, Mai, 2004), 17–19

[12] V.P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, Journal of Computational Physics, 230:7 (2011), 2384–2390 | DOI | MR | Zbl

[13] I.M. Sobol, “Uniformly distributed sequences with an additional property of uniformity”, USSR Computational Mathematics and Mathematical Physics, 16:5 (1976), 236–242 | DOI | MR | Zbl

[14] M. E. Zhukovskiy, S. V. Podoliako, R. V. Uskov, “Model of Individual Collisions for Description of Electron Transport in Matter”, Mathematical Models and Computer Simulations, 4:1 (2012), 101–109 | DOI

[15] V. Egorova, R. Uskov, M. Zhukovskiy, “The simulation of the photon-electron cascade on heterogeneous supercomputers”, The International Symposium on Structural Health Monitoring and Nondestructive Testing (SHM-NDT-2018) (Saarbrucken, Germany, 4–5 Oct. 2018) https://www.ndt.net/article/shmndt2018/papers/SHM-NDT-2018_paper_32.pdf

[16] F. P. Vasilev, Metody optimizacii, Izdatelstvo «Faktorial Press», M., 2002, 824 pp.

[17] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Ed., Pearson Education, 1998, 842 pp.

[18] S. Osowski, Sieci neuronowe do przetwarzania informacji, Oficyna Wydawnicza Politechniki Warszawskiej, 2006, 422 pp.

[19] V. A. Gasilov, A. Iu. Krukovskii, Iu. A. Poveshchenko, I. P. Tsygvintsev, “Odnorodnye raznostnye skhemy dlia resheniia sopriazhennykh zadach gidrodinamiki i uprugosti”, Preprinty IPM im. M.V. Keldysha, 2018, 013, 17 pp. | DOI

[20] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State, Birkhauser Verlag, Basel–Berlin, 2005, 439 pp. | MR | Zbl