On using artificial viscosity in edge-based schemes on unstructured meshes
Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 114-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

In numerical simulation of multidimensional gas dynamics, finite-volume schemes based on complete (i.e. based on three-wave model) Riemann solvers suffer from shock-wave instability. It can appear as oscillations that cannot be damped by slope limiters, or it can lead to a non-physical solution (carbuncle-phenomenon). To overcome this, one can switch to an incomplete (i.e. based on two-wave model) Riemann solver or introduce artificial viscosity. We compare these two approaches as applied to the EBR-WENO scheme for the discretization of convective fluxes and for the continuous P1-Galerkin method for the discretization of diffusion terms. We show that the results of simulations are more accurate if the method of artificial viscosity is used. However, on 3D unstructured meshes this way causes pressure pimples on the supersonic side of the shock, the amplitudes of which depend on the mesh quality. They can reach negative pressure and thus can result in crash of time integration. In this case, the switch to an incomplete Riemann solver gives satisfactory results with much less sensitivity to the quality of the mesh.
Keywords: edge-based scheme, unstructured mesh, artificial viscosity, carbuncle, WENO scheme.
@article{MM_2020_32_12_a9,
     author = {P. A. Bakhvalov and T. K. Kozubskaya},
     title = {On using artificial viscosity in edge-based schemes on unstructured meshes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {114--128},
     publisher = {mathdoc},
     volume = {32},
     number = {12},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a9/}
}
TY  - JOUR
AU  - P. A. Bakhvalov
AU  - T. K. Kozubskaya
TI  - On using artificial viscosity in edge-based schemes on unstructured meshes
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 114
EP  - 128
VL  - 32
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a9/
LA  - ru
ID  - MM_2020_32_12_a9
ER  - 
%0 Journal Article
%A P. A. Bakhvalov
%A T. K. Kozubskaya
%T On using artificial viscosity in edge-based schemes on unstructured meshes
%J Matematičeskoe modelirovanie
%D 2020
%P 114-128
%V 32
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_12_a9/
%G ru
%F MM_2020_32_12_a9
P. A. Bakhvalov; T. K. Kozubskaya. On using artificial viscosity in edge-based schemes on unstructured meshes. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 114-128. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a9/

[1] V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, Journal of Computational Physics, 230:7 (2011), 2384–2390 | DOI | MR | Zbl

[2] A. V. Rodionov, “Monotonic scheme of the second order of approximation for the continuous calculation of non-equilibrium flows”, USSR Comp. Math. Math. Phys., 27:2 (1987), 175–180 | DOI | MR | Zbl

[3] B. Van Leer, “Towards the ultimate conservative difference scheme. V. A Second-order Sequel to Godunov's”, Method. J. Comp. Phys., 32:1 (1979), 101–136 | DOI | Zbl

[4] A. Harten, S. Osher, “Uniformly high-order accurate essentially non-oscillatory scheme”, SIAM Journal of Numerical Analysis, 24:2 (1987), 279–309 | DOI | MR | Zbl

[5] A. Harten, “ENO schemes with subcell resolution”, J. of Comp. Phys., 83:1 (1989), 148–184 | DOI | MR | Zbl

[6] X. D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. of Computational Physics, 115 (1994), 200–212 | DOI | MR | Zbl

[7] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, Journal of Computational Physics, 126 (1996), 202–228 | DOI | MR | Zbl

[8] C. W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Tech. Rep. No 97–65, NASA, 1997 | MR

[9] R. Zhang, M. Zhang, C. W. Shu, “On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes”, Comm. Comp. Phys., 9 (2011), 807–827 | DOI | MR | Zbl

[10] L. Fu, X. Y. Hu, N. A. Adams, “A family of high-order targeted ENO schemes for compressible-fluid simulations”, J. Comp. Phys., 305 (2016), 333–359 | DOI | MR | Zbl

[11] L. Fu, X. Y. Hu, N. A. Adams, “Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws”, J. Comp. Phys., 349 (2017), 97–121 | DOI | MR | Zbl

[12] T. J. Barth, D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, AIAA Paper No 89–366, 1989

[13] L. Fezoui, B. Stouffet, “A class of implicit schemes for Euler simulations with unstructured meshes”, J. Comp. Phys., 84:1 (1989), 174–206 | DOI | MR | Zbl

[14] H. Luo, J. D. Baumt, R. Lohner, “Edge-Based Finite Element Scheme for the Euler Equations”, AIAA Journal, 32:6 (1994), 1183–1190 | DOI | Zbl

[15] H. Jasak, H. G. Weller, A. D. Gosman, “High resolution NVD differencing scheme for arbitrarily unstructured meshes”, Inter. J. for Numer. Methods in Fluids, 31:2 (1999), 431–449 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[16] C. Touze, A. Murrone, H. Guillard, “Multislope MUSCL method for general unstructured meshes”, Journal of Computational Physics, 284 (2015), 389–418 | DOI | MR | Zbl

[17] W. R. Wolf, J. L. F. Azevedo, “High-order ENO and WENO schemes for unstructured grids”, International Journal for Numerical Methods in Fluids, 55:10 (2007), 917–943 | DOI | MR | Zbl

[18] M. Dumbser, M. Kaeser, V. A. Titarev et al., “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems”, Journal of Computational Physics, 226 (2007), 204–243 | DOI | MR | Zbl

[19] P. Tsoutsanis, V. A. Titarev, D. Drikakis, “WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions”, J. of Comp. Physics, 230 (2011), 1585–1601 | DOI | MR | Zbl

[20] Y. Liu, Y. T. Zhang, “A Robust Reconstruction for Unstructured WENO Schemes”, Journal of Scientific Computing, 54 (2013), 603–621 | DOI | MR | Zbl

[21] P. Tsoutsanis, A. F. Antoniadis, D. Drikakis, “WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows”, J. of Comp. Phys., 256 (2014), 254–276 | DOI | MR | Zbl

[22] P. A. Bakhvalov, T. K. Kozubskaya, “Shema EBR-WENO dlya resheniya zadach gazovoi dinamiki s razryvami na nestrukturirovannyh setkah”, Preprinty IPM im. M.V. Keldysha, 2017, 023, 32 pp.

[23] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comp. Fluids, 157 (2017), 312–324 | DOI | MR | Zbl

[24] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer-Verlag, Berlin–Heidelberg, 1997 | MR | Zbl

[25] J. J. Quirk, “A contribution to the great Riemann solver debate”, Int. J. Num. Meth. Fluids, 18 (1994), 555–574 | DOI | MR | Zbl

[26] I. Y. Tagirova, A. V. Rodionov, “Application of the artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes”, Math. mod. Comp. Simul., 8:3 (2016), 249–262 | DOI | MR | Zbl

[27] A. V. Rodionov, “Artificial viscosity to cure the shock instability in high-order Godunov-type schemes”, Computers Fluids, 190 (2019), 77–97 | DOI | MR | Zbl

[28] P. L. Roe, “Approximate Riemann solver, parameter vectors and difference schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[29] V. V. Rusanov, “Calculation of interaction of non-steady shock waves with obstacles”, J. Comp. Math. Phys. USSR, 1:2 (1962), 304–320 | DOI | MR

[30] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, 2002 | MR | Zbl

[31] H. Nishikawa, Beyond Interface Gradient. A General Principle for Constructing Diffusion Schemes, AIAA Paper No 2010–5093, 2010

[32] K. Lipnikov, M. Shashkov, D. Svyatskiy, Yu. Vassilevski, “Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes”, Journal of Computational Physics, 227 (2007), 492–512 | DOI | MR | Zbl

[33] K. Lipnikov, D. Svyatskiy, Yu. Vassilevski, “Minimal stencilnite volume scheme with the discrete maximum principle”, Russ. J. Num. Anal. Math. Model., 27:4 (2012), 369–385 | MR

[34] U. S. Vevek, B. Zang, T. H. New, “On Alternative Setups of the Double Mach Reflection Problem”, J. of Scientific Computing, 78 (2019), 1291–1303 | DOI | MR | Zbl

[35] P. Woodward, P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks”, J. of Computational Physics, 54 (1984), 115–173 | DOI | MR | Zbl