Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_12_a9, author = {P. A. Bakhvalov and T. K. Kozubskaya}, title = {On using artificial viscosity in edge-based schemes on unstructured meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {114--128}, publisher = {mathdoc}, volume = {32}, number = {12}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a9/} }
TY - JOUR AU - P. A. Bakhvalov AU - T. K. Kozubskaya TI - On using artificial viscosity in edge-based schemes on unstructured meshes JO - Matematičeskoe modelirovanie PY - 2020 SP - 114 EP - 128 VL - 32 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a9/ LA - ru ID - MM_2020_32_12_a9 ER -
P. A. Bakhvalov; T. K. Kozubskaya. On using artificial viscosity in edge-based schemes on unstructured meshes. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 114-128. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a9/
[1] V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, Journal of Computational Physics, 230:7 (2011), 2384–2390 | DOI | MR | Zbl
[2] A. V. Rodionov, “Monotonic scheme of the second order of approximation for the continuous calculation of non-equilibrium flows”, USSR Comp. Math. Math. Phys., 27:2 (1987), 175–180 | DOI | MR | Zbl
[3] B. Van Leer, “Towards the ultimate conservative difference scheme. V. A Second-order Sequel to Godunov's”, Method. J. Comp. Phys., 32:1 (1979), 101–136 | DOI | Zbl
[4] A. Harten, S. Osher, “Uniformly high-order accurate essentially non-oscillatory scheme”, SIAM Journal of Numerical Analysis, 24:2 (1987), 279–309 | DOI | MR | Zbl
[5] A. Harten, “ENO schemes with subcell resolution”, J. of Comp. Phys., 83:1 (1989), 148–184 | DOI | MR | Zbl
[6] X. D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. of Computational Physics, 115 (1994), 200–212 | DOI | MR | Zbl
[7] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, Journal of Computational Physics, 126 (1996), 202–228 | DOI | MR | Zbl
[8] C. W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Tech. Rep. No 97–65, NASA, 1997 | MR
[9] R. Zhang, M. Zhang, C. W. Shu, “On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes”, Comm. Comp. Phys., 9 (2011), 807–827 | DOI | MR | Zbl
[10] L. Fu, X. Y. Hu, N. A. Adams, “A family of high-order targeted ENO schemes for compressible-fluid simulations”, J. Comp. Phys., 305 (2016), 333–359 | DOI | MR | Zbl
[11] L. Fu, X. Y. Hu, N. A. Adams, “Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws”, J. Comp. Phys., 349 (2017), 97–121 | DOI | MR | Zbl
[12] T. J. Barth, D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, AIAA Paper No 89–366, 1989
[13] L. Fezoui, B. Stouffet, “A class of implicit schemes for Euler simulations with unstructured meshes”, J. Comp. Phys., 84:1 (1989), 174–206 | DOI | MR | Zbl
[14] H. Luo, J. D. Baumt, R. Lohner, “Edge-Based Finite Element Scheme for the Euler Equations”, AIAA Journal, 32:6 (1994), 1183–1190 | DOI | Zbl
[15] H. Jasak, H. G. Weller, A. D. Gosman, “High resolution NVD differencing scheme for arbitrarily unstructured meshes”, Inter. J. for Numer. Methods in Fluids, 31:2 (1999), 431–449 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[16] C. Touze, A. Murrone, H. Guillard, “Multislope MUSCL method for general unstructured meshes”, Journal of Computational Physics, 284 (2015), 389–418 | DOI | MR | Zbl
[17] W. R. Wolf, J. L. F. Azevedo, “High-order ENO and WENO schemes for unstructured grids”, International Journal for Numerical Methods in Fluids, 55:10 (2007), 917–943 | DOI | MR | Zbl
[18] M. Dumbser, M. Kaeser, V. A. Titarev et al., “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems”, Journal of Computational Physics, 226 (2007), 204–243 | DOI | MR | Zbl
[19] P. Tsoutsanis, V. A. Titarev, D. Drikakis, “WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions”, J. of Comp. Physics, 230 (2011), 1585–1601 | DOI | MR | Zbl
[20] Y. Liu, Y. T. Zhang, “A Robust Reconstruction for Unstructured WENO Schemes”, Journal of Scientific Computing, 54 (2013), 603–621 | DOI | MR | Zbl
[21] P. Tsoutsanis, A. F. Antoniadis, D. Drikakis, “WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows”, J. of Comp. Phys., 256 (2014), 254–276 | DOI | MR | Zbl
[22] P. A. Bakhvalov, T. K. Kozubskaya, “Shema EBR-WENO dlya resheniya zadach gazovoi dinamiki s razryvami na nestrukturirovannyh setkah”, Preprinty IPM im. M.V. Keldysha, 2017, 023, 32 pp.
[23] P. Bakhvalov, T. Kozubskaya, “EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes”, Comp. Fluids, 157 (2017), 312–324 | DOI | MR | Zbl
[24] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer-Verlag, Berlin–Heidelberg, 1997 | MR | Zbl
[25] J. J. Quirk, “A contribution to the great Riemann solver debate”, Int. J. Num. Meth. Fluids, 18 (1994), 555–574 | DOI | MR | Zbl
[26] I. Y. Tagirova, A. V. Rodionov, “Application of the artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes”, Math. mod. Comp. Simul., 8:3 (2016), 249–262 | DOI | MR | Zbl
[27] A. V. Rodionov, “Artificial viscosity to cure the shock instability in high-order Godunov-type schemes”, Computers Fluids, 190 (2019), 77–97 | DOI | MR | Zbl
[28] P. L. Roe, “Approximate Riemann solver, parameter vectors and difference schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[29] V. V. Rusanov, “Calculation of interaction of non-steady shock waves with obstacles”, J. Comp. Math. Phys. USSR, 1:2 (1962), 304–320 | DOI | MR
[30] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, 2002 | MR | Zbl
[31] H. Nishikawa, Beyond Interface Gradient. A General Principle for Constructing Diffusion Schemes, AIAA Paper No 2010–5093, 2010
[32] K. Lipnikov, M. Shashkov, D. Svyatskiy, Yu. Vassilevski, “Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes”, Journal of Computational Physics, 227 (2007), 492–512 | DOI | MR | Zbl
[33] K. Lipnikov, D. Svyatskiy, Yu. Vassilevski, “Minimal stencilnite volume scheme with the discrete maximum principle”, Russ. J. Num. Anal. Math. Model., 27:4 (2012), 369–385 | MR
[34] U. S. Vevek, B. Zang, T. H. New, “On Alternative Setups of the Double Mach Reflection Problem”, J. of Scientific Computing, 78 (2019), 1291–1303 | DOI | MR | Zbl
[35] P. Woodward, P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks”, J. of Computational Physics, 54 (1984), 115–173 | DOI | MR | Zbl