Modelling the mechanisms of destruction of the surface layer of a meteoroid under the thermal factor
Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 103-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the equations of the classical linear theory of elasticity, a model problem of the stress-strain state of an elastic cylinder simulating a meteor body falling in the atmosphere with a thin near-surface layer heated due to thermal loads is posed and analytically solved. It is within the framework of the linear formulation of the problem that the influence of an inhomogeneous temperature field on this process has been identified and separately investigated. The maximum shear stresses are calculated for two cases of heating this layer, corresponding to a rapidly rotating cylinder and a moving one without rotation, exceeding the critical strength of its material. Over the past decade, astronomers have identified several dozen small bodies of the Solar system of decameter sizes that have fairly high initial rotation periods in outer space. The features of the mechanisms of formation of the surface relief of falling meteoroids of various types for these cases are revealed. So fast-rotating meteoroids, subject to the effect of peeling-dropping a thin heated outer layer, fell out as meteorites with a smooth surface structure. For those falling forward, the meteorites had a sculptural surface relief covered with regmaglypts generated by Görtler 's vortices.
Keywords: meteoroid, meteorites, stresses, failure mechanisms, Fourier series, strength, Görtler 's vortices
Mots-clés : regmaglypt.
@article{MM_2020_32_12_a8,
     author = {V. A. Andrushchenko and V. A. Goloveshkin and N. G. Syzranova},
     title = {Modelling the mechanisms of destruction of the surface layer of a meteoroid under the thermal factor},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--113},
     publisher = {mathdoc},
     volume = {32},
     number = {12},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a8/}
}
TY  - JOUR
AU  - V. A. Andrushchenko
AU  - V. A. Goloveshkin
AU  - N. G. Syzranova
TI  - Modelling the mechanisms of destruction of the surface layer of a meteoroid under the thermal factor
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 103
EP  - 113
VL  - 32
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a8/
LA  - ru
ID  - MM_2020_32_12_a8
ER  - 
%0 Journal Article
%A V. A. Andrushchenko
%A V. A. Goloveshkin
%A N. G. Syzranova
%T Modelling the mechanisms of destruction of the surface layer of a meteoroid under the thermal factor
%J Matematičeskoe modelirovanie
%D 2020
%P 103-113
%V 32
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_12_a8/
%G ru
%F MM_2020_32_12_a8
V. A. Andrushchenko; V. A. Goloveshkin; N. G. Syzranova. Modelling the mechanisms of destruction of the surface layer of a meteoroid under the thermal factor. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 103-113. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a8/

[1] E. F.F. Chladni, Über den Ursprung der von Pallas gefundenen und anderer ihr ähnlicher Eisenmassen und über einige damit in Verbindung stehende Naturerscheinungen, bei J.F. Hartknoch, Leipzig–Riga, 1794, 63 pp.

[2] E. L. Krinov, Osnovy meteoritiki, GITTL, M., 1955, 391 pp.

[3] A. N. Simonenko, Meteority oskolki asteroidov, Nauka, M., 1979, 224 pp.

[4] Meteoritical Bulletin Database, http://www.lpi.usra.edu/meteor/metbull.php

[5] T. Nagata, Proc. Second Symp. on Yamato Meteorites, Publ. Nat. Inst. of Polar Res., Tokyo, 1978, 267 pp.

[6] D. W. Hughes, “Meteorite falls and finds: some statistics”, Meteorities, 16 (1981), 269–281 | DOI

[7] “Spinning meteors”, Sky Telescope, 1989, no. 1, 11–12

[8] V. A. Andrushchenko, A. N. Galenko, V. A. Goloveshkin, N. N. Kholin, “The rotation effect on the stress-strain state of a space body in its motion in the atmosphere of a planet”, Kinematics and Physics of Celestial Bodies, 23:43 (2007), 172–184

[9] E. N. Slyuta, “Physical and mechanical properties of stony meteorites”, Solar System Research, 51:1 (2017), 64–85 | DOI

[10] E. N. Slyuta, “Physicomechanical properties and gravitational deformation of metallic asteroids”, Solar System Research, 47:2 (2013), 109–126 | DOI

[11] N. N. Kholin, V. A. Goloveshkin, V. A. Andrushchenko, Matematicheskoe modelirovanie volnovykh iavlenii v kondensirovannykh sredakh i dinamika meteoroidov, Lenand, M., 2016, 216 pp.

[12] E. Levitan, “Obychnye i neobychnye asteroid”, Nauka i zhizn, 2008, no. 9, 93–96

[13] P. A. Polivanov, Y. V. Gromyko, A. A. Sidorenko, A. A. Maslov, “Turbulization of the wake behind a single roughness element on a blunted body at a hypersonic Mach number”, J. of Applied Mechanics and Technical Physics, 58:5 (2017), 845–852 | DOI

[14] D. A. de la Chevalerie, A. Fontenean, L. de Luca, G. Cardone, “Görtler-type vortices in hypersonic flows: the ramp problem”, Experiment. Thermal Fluid Sci., 15:2 (1997), 69–81 | DOI

[15] A. V. Ivanov, Y. S. Kachanov, D. A. Mischenko, “Generation of nonstationary Görtler vortices by localized surface nonuniformities”, Receptivity coefficients, 19:4 (2012), 523–539

[16] H. Görtler, On the three-dimensional instability of laminar boundary layers on concave walls, TM 1375, NASA, June 1954 (translation of original 1940 paper) | MR

[17] A. L. Laganelli, D. E. Nestler, “Surface ablation patterns: a phemenology study”, AIAA J., 1969, no. 7, 1319–1325 | DOI

[18] P. V. Chuvakhov, V. Y. Borovoy, I. V. Egorov et al., “Effect of small bluntness on formation of Görtler vortices in a supersonic compression corner flow”, Journal of Applied Mechanics and Technical Physics, 58:6 (2017), 975–989 | DOI