Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_12_a6, author = {S. I. Martynov and L. Yu. Tkach}, title = {Model of hydrodynamic mechanism of movement of nanomotors}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {81--94}, publisher = {mathdoc}, volume = {32}, number = {12}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a6/} }
S. I. Martynov; L. Yu. Tkach. Model of hydrodynamic mechanism of movement of nanomotors. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 81-94. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a6/
[1] C. Montemagno, G. Bachand, S. Stelick, M. Bachand, “Constructing Biological Motor Powered Nanomechanical Devices”, Nanotechnology, 10 (1999), 225–231 | DOI
[2] W. Gao, J. Wang, “Synthetic micro/nanomotors in drug delivery”, Nanoscale, 2014, no. 6, 10486–10494 | DOI
[3] X. Li, Y. M. Sun, Z. Y. Zhang, N. X. Feng, H. Song, Y. L. Liu, L. Hai, J. M. Cao, G. P. Wang, “Visible light-driven multi-motion modes CNC/TiO$_2$ nanomotors for highly efficient degradation of emerging contaminants”, Carbon, 155 (2019), 195–203 | DOI
[4] W. Gao, B. E. F. de Avila, L. Zhang, J. Wang, “Targeting and Isolation of Cancer Cells Using Micro/Nanomotors”, Adv. Drug Deliv. Rev., 125 (2018), 94–101 | DOI
[5] M. Medina-Sánchez, Xu H. Haifeng, O. G. Schmidt, “Micro- and nano-motors: the new generation of drug carriers”, Therapeutic delivery, 9:4 (2018), 303–316 | DOI
[6] Z. Lin, C. Gao, M. Chen, X. Lin, Q. He, “Collective motion and dynamic self-assembly of colloid motors”, Current Opinion in Colloid Interface Science, 35 (2018), 51–58 | DOI
[7] W. F. Paxton, A. Sen, T. E. Mallouk, “Motility of catalytic nanoparticles through self-generated forces”, Chemistry, 11:22 (2005), 6462–6470 | DOI
[8] W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, T. E. Mallouk, A. Sen, “Catalytically Induced Electrokinetics for Motors and Micropumps”, J. Am. Chem. Soc., 128:46 (2006), 14881–14888 | DOI
[9] R. Laocharoensuk, J. Burdick, J. Wang, “Carbon-nanotube-induced acceleration of catalytic nanomotors”, ACS Nano, 2:5 (2008), 1069–1075 | DOI
[10] J. L. Moran, P. M. Wheat, J. D. Posner, “Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis”, Phys. Rev. E, 81:6 (2010), 065302 | DOI | MR
[11] J. L. Moran, J. D. Posner, “Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis”, J. Fluid Mech., 680 (2011), 31–66 | DOI | MR | Zbl
[12] P. Mitchell, “Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in microorganisms”, Proc. R. Phys. Soc. Edin., 25 (1956), 32–34
[13] A. I. Zhakin, “Electrohydrodynamics”, Physics-Uspekhi, 55:5 (2012), 465–488 | DOI | DOI
[14] S. I. Martynov, L. Yu. Tkach, “Mechanism of moving particle aggregates in a viscous fluid”, Comp. Math. Math. Phys., 59:3 (2019), 475–483 | DOI | MR | Zbl
[15] S.I. Martynov, “Hydrodynamic interaction of particles”, Fluid Dyn., 33 (1998), 245–251 | DOI | MR | Zbl
[16] S. I. Martynov, L. Yu. Tkach, “Simulation of particle aggregate dynamics in a viscous fluid”, Comp. Math. Math. Phys., 55:2 (2015), 282–290 | DOI | MR | Zbl