Model of hydrodynamic mechanism of movement of nanomotors
Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 81-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on experiments on the movement of a Pt / Au bimetallic rod in a hydrogen peroxide solution, a model of the hydrodynamic mechanism of such motion is proposed. The proposed model is based on the equations of hydrodynamics of a viscous fluid and the dynamics of particles and takes into account the hydrodynamic interaction of all charged particles in the fluid between itself and the rod. The core and the charge induced by the reaction is modeled as a dipole aggregate, and ions as a cloud of small charged particles in the surrounding viscous liquid. Numerical modeling and visualization of calculations was carried out using a specially developed software package. The numerical calculations confirmed the ability of the dipole aggregate to move as a result of the hydrodynamic force created by the generated flow of the surrounding fluid in all cases considered for the distribution of small particles and their total charge. A qualitative agreement is obtained between the model values of the velocity and potential of the dipole with the experimental ones.
Keywords: numerical simulation, dipole aggregate, charged particles.
Mots-clés : viscous fluid, hydrodynamic interaction
@article{MM_2020_32_12_a6,
     author = {S. I. Martynov and L. Yu. Tkach},
     title = {Model of hydrodynamic mechanism of movement of nanomotors},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {32},
     number = {12},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a6/}
}
TY  - JOUR
AU  - S. I. Martynov
AU  - L. Yu. Tkach
TI  - Model of hydrodynamic mechanism of movement of nanomotors
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 81
EP  - 94
VL  - 32
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a6/
LA  - ru
ID  - MM_2020_32_12_a6
ER  - 
%0 Journal Article
%A S. I. Martynov
%A L. Yu. Tkach
%T Model of hydrodynamic mechanism of movement of nanomotors
%J Matematičeskoe modelirovanie
%D 2020
%P 81-94
%V 32
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_12_a6/
%G ru
%F MM_2020_32_12_a6
S. I. Martynov; L. Yu. Tkach. Model of hydrodynamic mechanism of movement of nanomotors. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 81-94. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a6/

[1] C. Montemagno, G. Bachand, S. Stelick, M. Bachand, “Constructing Biological Motor Powered Nanomechanical Devices”, Nanotechnology, 10 (1999), 225–231 | DOI

[2] W. Gao, J. Wang, “Synthetic micro/nanomotors in drug delivery”, Nanoscale, 2014, no. 6, 10486–10494 | DOI

[3] X. Li, Y. M. Sun, Z. Y. Zhang, N. X. Feng, H. Song, Y. L. Liu, L. Hai, J. M. Cao, G. P. Wang, “Visible light-driven multi-motion modes CNC/TiO$_2$ nanomotors for highly efficient degradation of emerging contaminants”, Carbon, 155 (2019), 195–203 | DOI

[4] W. Gao, B. E. F. de Avila, L. Zhang, J. Wang, “Targeting and Isolation of Cancer Cells Using Micro/Nanomotors”, Adv. Drug Deliv. Rev., 125 (2018), 94–101 | DOI

[5] M. Medina-Sánchez, Xu H. Haifeng, O. G. Schmidt, “Micro- and nano-motors: the new generation of drug carriers”, Therapeutic delivery, 9:4 (2018), 303–316 | DOI

[6] Z. Lin, C. Gao, M. Chen, X. Lin, Q. He, “Collective motion and dynamic self-assembly of colloid motors”, Current Opinion in Colloid Interface Science, 35 (2018), 51–58 | DOI

[7] W. F. Paxton, A. Sen, T. E. Mallouk, “Motility of catalytic nanoparticles through self-generated forces”, Chemistry, 11:22 (2005), 6462–6470 | DOI

[8] W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, T. E. Mallouk, A. Sen, “Catalytically Induced Electrokinetics for Motors and Micropumps”, J. Am. Chem. Soc., 128:46 (2006), 14881–14888 | DOI

[9] R. Laocharoensuk, J. Burdick, J. Wang, “Carbon-nanotube-induced acceleration of catalytic nanomotors”, ACS Nano, 2:5 (2008), 1069–1075 | DOI

[10] J. L. Moran, P. M. Wheat, J. D. Posner, “Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis”, Phys. Rev. E, 81:6 (2010), 065302 | DOI | MR

[11] J. L. Moran, J. D. Posner, “Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis”, J. Fluid Mech., 680 (2011), 31–66 | DOI | MR | Zbl

[12] P. Mitchell, “Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in microorganisms”, Proc. R. Phys. Soc. Edin., 25 (1956), 32–34

[13] A. I. Zhakin, “Electrohydrodynamics”, Physics-Uspekhi, 55:5 (2012), 465–488 | DOI | DOI

[14] S. I. Martynov, L. Yu. Tkach, “Mechanism of moving particle aggregates in a viscous fluid”, Comp. Math. Math. Phys., 59:3 (2019), 475–483 | DOI | MR | Zbl

[15] S.I. Martynov, “Hydrodynamic interaction of particles”, Fluid Dyn., 33 (1998), 245–251 | DOI | MR | Zbl

[16] S. I. Martynov, L. Yu. Tkach, “Simulation of particle aggregate dynamics in a viscous fluid”, Comp. Math. Math. Phys., 55:2 (2015), 282–290 | DOI | MR | Zbl