Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_12_a4, author = {A. L. Afendikov and V. S. Nikitin}, title = {Numerical simulation of supersonic flows around systems of free bodies}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {55--64}, publisher = {mathdoc}, volume = {32}, number = {12}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a4/} }
TY - JOUR AU - A. L. Afendikov AU - V. S. Nikitin TI - Numerical simulation of supersonic flows around systems of free bodies JO - Matematičeskoe modelirovanie PY - 2020 SP - 55 EP - 64 VL - 32 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a4/ LA - ru ID - MM_2020_32_12_a4 ER -
A. L. Afendikov; V. S. Nikitin. Numerical simulation of supersonic flows around systems of free bodies. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 55-64. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a4/
[1] A. L. Afendikov, Y. V. Khankhasaeva, A. E. Lutsky et al., “Numerical Simulation of the Recir-culation Flow during the Supersonic Separation of Moving Bodies”, Math. Models Comp. Simul., 12 (2020), 282–292 | DOI
[2] Pratik Das, Oishik Sen, Gustaaf Jacobs, H. S. Udaykumar, “A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows”, Intern. J. of Comp. Fluid Dynamics, 31:6–8 (2017), 269–291 | DOI | MR
[3] D. Sidorenko, P. Utkin, “Numerical Modeling of the Relaxation of a Body behind the Transmitted Shock Wave”, Math. Models Comp. Simul., 11 (2019), 509–517 | DOI | MR
[4] H. Forrer, M. Berger, “Flow Simulations on Cartesian Grids Involving Complex Moving Geometries”, Hyperbolic Problems: Theory, Numerics, Applications, International Series of Numerical Mathematics, 129, eds. Fey M., Jeltsch R., Birkhäuser, Basel, 1999 | DOI | MR | Zbl
[5] I. S. Menshov, M. A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations in domains with varying geometry”, Math. Models Comp. Simul., 6 (2014), 612–621 | DOI | MR | Zbl
[6] I. S. Menshov, P. V. Pavlukhin, “Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted Cartesian grids”, Comp. Math. and Math. Phys., 2016, 1651–1664 | DOI | MR | Zbl
[7] S.K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb. (N.S.), 47(89):3, 271–306
[8] B. Van Leer, “Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov's method”, J. Comp. Phys., 1979, 101–136 | Zbl
[9] A. L. Afendikov, A. A. Davydov, A. E. Lutskii, I. S. Menshov, K. D. Merkulov, A. V. Plenkin, Ia. V. Khankhasaeva, Adaptivnye veivletnye algoritmy dlia resheniia zadach gidro- i gazovoi dinamiki na dekartovykh setkakh, IPM im. M.V. Keldysha, M., 2016, 232 pp.
[10] N.N. Anuchina, K.I. Babenko, V.S. Godunov, Teoreticheskie osnovy i konstuirovanie vychislitelnykh algoritmov zadach matematicheskoy fiziki, Nauka, M., 1979, 296 pp.
[11] A. L. Afendikov, K. D. Merkulov, A. V. Plenkin, “Dinamicheskaia lokalnaia adaptatsiia setok na osnove veivlet-analiza v zadachakh gazovoi dinamiki”, Preprinty IPM im. M.V. Keldysha RAN, 2014, 099, 26 pp.