Numerical simulation of supersonic flows around systems of free bodies
Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of supersonic flow around a system of bodies freely moving in a gas flow is considered. The mathematical model consists of Euler's equations for a region filled with gas, supplemented by Newton's equations for describing the motion of rigid bodies under pressure force. The computational algorithm uses locally adaptive Cartesian grids, in which the adaptation is based on wavelet analysis. The interaction of gas and solids is modeled using the immersed boundary method. The capabilities of the software implemented code are demonstrated on the problem of raising a dust grain under the action of a shock wave and on modeling the free motion of a system of particles in a supersonic 2D gas flow. Quantitative and qualitative results on the velocity of a dust grain and on the evolution of initial bodies configurations are obtained, which refine the known results.
Keywords: locally adaptive Cartesian grids, immersed boundary method, free motion
Mots-clés : wavelet adaptation, particles.
@article{MM_2020_32_12_a4,
     author = {A. L. Afendikov and V. S. Nikitin},
     title = {Numerical simulation of supersonic flows around systems of free bodies},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {32},
     number = {12},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a4/}
}
TY  - JOUR
AU  - A. L. Afendikov
AU  - V. S. Nikitin
TI  - Numerical simulation of supersonic flows around systems of free bodies
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 55
EP  - 64
VL  - 32
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a4/
LA  - ru
ID  - MM_2020_32_12_a4
ER  - 
%0 Journal Article
%A A. L. Afendikov
%A V. S. Nikitin
%T Numerical simulation of supersonic flows around systems of free bodies
%J Matematičeskoe modelirovanie
%D 2020
%P 55-64
%V 32
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_12_a4/
%G ru
%F MM_2020_32_12_a4
A. L. Afendikov; V. S. Nikitin. Numerical simulation of supersonic flows around systems of free bodies. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 55-64. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a4/

[1] A. L. Afendikov, Y. V. Khankhasaeva, A. E. Lutsky et al., “Numerical Simulation of the Recir-culation Flow during the Supersonic Separation of Moving Bodies”, Math. Models Comp. Simul., 12 (2020), 282–292 | DOI

[2] Pratik Das, Oishik Sen, Gustaaf Jacobs, H. S. Udaykumar, “A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows”, Intern. J. of Comp. Fluid Dynamics, 31:6–8 (2017), 269–291 | DOI | MR

[3] D. Sidorenko, P. Utkin, “Numerical Modeling of the Relaxation of a Body behind the Transmitted Shock Wave”, Math. Models Comp. Simul., 11 (2019), 509–517 | DOI | MR

[4] H. Forrer, M. Berger, “Flow Simulations on Cartesian Grids Involving Complex Moving Geometries”, Hyperbolic Problems: Theory, Numerics, Applications, International Series of Numerical Mathematics, 129, eds. Fey M., Jeltsch R., Birkhäuser, Basel, 1999 | DOI | MR | Zbl

[5] I. S. Menshov, M. A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations in domains with varying geometry”, Math. Models Comp. Simul., 6 (2014), 612–621 | DOI | MR | Zbl

[6] I. S. Menshov, P. V. Pavlukhin, “Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted Cartesian grids”, Comp. Math. and Math. Phys., 2016, 1651–1664 | DOI | MR | Zbl

[7] S.K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb. (N.S.), 47(89):3, 271–306

[8] B. Van Leer, “Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov's method”, J. Comp. Phys., 1979, 101–136 | Zbl

[9] A. L. Afendikov, A. A. Davydov, A. E. Lutskii, I. S. Menshov, K. D. Merkulov, A. V. Plenkin, Ia. V. Khankhasaeva, Adaptivnye veivletnye algoritmy dlia resheniia zadach gidro- i gazovoi dinamiki na dekartovykh setkakh, IPM im. M.V. Keldysha, M., 2016, 232 pp.

[10] N.N. Anuchina, K.I. Babenko, V.S. Godunov, Teoreticheskie osnovy i konstuirovanie vychislitelnykh algoritmov zadach matematicheskoy fiziki, Nauka, M., 1979, 296 pp.

[11] A. L. Afendikov, K. D. Merkulov, A. V. Plenkin, “Dinamicheskaia lokalnaia adaptatsiia setok na osnove veivlet-analiza v zadachakh gazovoi dinamiki”, Preprinty IPM im. M.V. Keldysha RAN, 2014, 099, 26 pp.