Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_12_a3, author = {E. E. Nikulin and A. A. Pekhterev}, title = {Turbulence on financial markets and multiplicative cascade model of volatility}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--54}, publisher = {mathdoc}, volume = {32}, number = {12}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a3/} }
TY - JOUR AU - E. E. Nikulin AU - A. A. Pekhterev TI - Turbulence on financial markets and multiplicative cascade model of volatility JO - Matematičeskoe modelirovanie PY - 2020 SP - 43 EP - 54 VL - 32 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a3/ LA - ru ID - MM_2020_32_12_a3 ER -
E. E. Nikulin; A. A. Pekhterev. Turbulence on financial markets and multiplicative cascade model of volatility. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 43-54. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a3/
[1] B. Mandelbrot, “The variation of certain speculative prices”, Journal of Business, 36:4 (1963), 394–419 | DOI
[2] R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation”, Econometrica, 50:4, July (1982), 987–1008 | DOI | MR
[3] T. Bollerslev, “Generalized autoregressive conditional heteroscedasticity”, Journal of Econometrics, 31:3, April (1986), 307–327 | DOI | MR | Zbl
[4] D. Nelson, “Conditional heteroskedasticity in asset returns: A new approach”, Econometrica, 59:2, March (1991), 347–370 | DOI | MR | Zbl
[5] R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the stock volatility and the crash of 87: Discussion”, The Review of Financial Studies, 3:1, March (1990), 103–106 | DOI
[6] R. F. Engle, V. K. Ng, “Measuring and testing the impact of news on volatility”, Journal of Finance, 48:5, December (1993), 1749–1778 | DOI
[7] P. Hansen, A. Lunde, “A forecast comparison of volatility models: Does anything beat a garch(1,1)”, Journal of Applied Econometrics, 20:7, March (2005), 873–889 | DOI | MR
[8] F. Black, M. Scholes, “Pricing of options and corporate liabilities”, Journal of Political Economy, 81:3, May–June (1973), 637–654 | DOI | MR | Zbl
[9] R. Merton, “Theory of rational option pricing”, Bell Journal of Economics and Management Sci., 4:1, Spring (1973), 141–183 | DOI | MR | Zbl
[10] S. Taylor, Financial Returns Modelled by the Product of two Stochastic Processes a Study of the Daily Sugar Prices 1961–1979, v. 1, North-Holland, Amsterdam, 1982
[11] Steven L. Heston, “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Review of Financial Studies, 6:2 (1993), 327–343 | DOI | MR | Zbl
[12] J. Hull, A. White, “The pricing of options on assets with stochastic volatilities”, Journal of Finance, 42:2 (1987), 281–300 | DOI
[13] L. Scott, “Option pricing when the variance changes randomly: Theory, estimation, and an application”, Journal of Financial and Quantitative Analysis, 22:4 (1987), 419–438 | DOI
[14] E. Stein, J. Stein, “Stock price distributions with stochastic volatility: an analytic approach”, Review of Financial Studies, 4:4 (1991), 727–752 | DOI | Zbl
[15] T. Andersen, T. Bollerslev, F. Diebold, P. Labys, “The distribution of exchange rate volatility”, Journal of the American Statistical Association, 96:453 (2001), 42–55 | DOI | MR | Zbl
[16] T. Andersen, T. Bollerslev, F. Diebold, P. Labys, “Modeling and forecasting realized volatility”, Econometrica, 71:2 (2003), 579–625 | DOI | MR | Zbl
[17] O. Barndorff-Nielsen, N. Shephard, “Econometric analysis of realized volatility and its use in estimating stochastic volatility models”, J. of Royal Stat. Soc., 64:2 (2002), 253–280 | DOI | MR | Zbl
[18] M. Dacorogna, U. Muller, R. Dave, R. Olsen, O. Pictet, Modelling Short-term Volatility with GARCH and HARCH models, John Wiley, N.Y., 1998
[19] G. Zumbach, “Volatility processes and volatility forecast with long memory”, Quantitative Finance, 4:1 (2004), 70–86 | MR | Zbl
[20] V. M. Isakov, S. I. Kabanikhin, A. A. Shanin, M. A. Shishlenin, S. Zhang, “Algorithm for Determining the Volatility Function in the Black-Scholes Model”, Computational Mathematics and Mathematical Physics, 59:10 (2019), 1753–1758 | DOI | MR | Zbl
[21] A. N. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 2004
[22] L. Onsager, “Statistical hydrodynamics”, Il Nuovo Cimento, 6, supp. (1949), 279–287 | DOI | MR
[23] G. Gauthier, M. T. Reeves, X. Yu, A. S. Bradley, M. A. Baker, T. A. Bell, H. Rubinsztein-Dunlop, M. J. Davis, T. W. Neely, “Giant vortex clusters in a two-dimensional quantum fluid”, Science, 364:6447 (2019), 1264–1267 | DOI | MR | Zbl
[24] S. P. Johnstone, A. J. Groszek, P. T. Starkey, C. J. Billington, T. P. Simula, K. Helmerson, “Evolution of large-scale flow from turbulence in a two-dimensional superfluid”, Science, 364:6447 (2019), 1267–1271 | DOI | MR | Zbl
[25] S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge, “Turbulent cascades in foreign exchange markets”, Nature, 381:6585 (1996), 767–770 | DOI
[26] U. Frisch, Turbulence, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[27] W. Breymann, S. Ghashghaie, P. Talkner, “A stochastic cascade model for FX dynamics”, Intern. J. of Theoretical Applied Finance, 2000, no. 03, 357–360, arXiv: cond-mat/0004179 | DOI | Zbl
[28] A. Subbotin, A multi-horizon scale for volatility, CES Working Paper 20, 2008 https://halshs.archives-ouvertes.fr/halshs-00261514
[29] A. Subbotin, “Modelirovanie volatilnosti: ot uslovnoi geteroskedastichnosti k kaskadam na mnozhestvennykh gorizontakh”, Prikladnaia ekonometrika, 3:15 (2009), 94–138
[30] J. Muzy, J. Delour, E. Bacry, “Modelling fluctuations of financial time series: from cascade process to stochastic volatility model”, The Europ. Phys. J. B, 17:3 (2000), 537–548 | DOI