Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_11_a9, author = {N. M. Kashchenko and S. A. Ishanov and S. V. Matsievsky}, title = {A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {129--140}, publisher = {mathdoc}, volume = {32}, number = {11}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a9/} }
TY - JOUR AU - N. M. Kashchenko AU - S. A. Ishanov AU - S. V. Matsievsky TI - A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles JO - Matematičeskoe modelirovanie PY - 2020 SP - 129 EP - 140 VL - 32 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_11_a9/ LA - ru ID - MM_2020_32_11_a9 ER -
%0 Journal Article %A N. M. Kashchenko %A S. A. Ishanov %A S. V. Matsievsky %T A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles %J Matematičeskoe modelirovanie %D 2020 %P 129-140 %V 32 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_11_a9/ %G ru %F MM_2020_32_11_a9
N. M. Kashchenko; S. A. Ishanov; S. V. Matsievsky. A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 129-140. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a9/
[1] D. T. Farley, B. B. Balsley, R. F. Woodman, J. P. McClure, “Equatorial spread F: Implications of VHF radar observations”, J. Geophys. Res., 75 (1970), 7199–7216 | DOI
[2] B. W. Reinisch, M. Abdu, I. Batista et al., “Multistation digisonde observations of equatorial spread F in South America”, Ann. Geophys., 22 (2004), 3145 | DOI
[3] J. Rottger, “The macro-scale structure of equatorial spread-F irregularities”, J. Atm. Terr. Phys., 38 (1976), 97–101 | DOI
[4] S. Saito, T. Maruyama, M. Ishii et al, “Observations of small- to large-scale ionospheric irregularities associated with plasma bubbles with a transequatorial HF propagation experiment and spaced GPS receivers”, J. Geophys. Res., 113:A1 (2008), 2313
[5] R. F. Woodman, Spread F an old equatorial aeronomy problem finally resolved?, Ann. Geophys., 27 (2009), 1915–1934 | DOI
[6] S. V. Matsievskii, N. M. Kashchenko, M. A. Nikitin, “Ionospheric bubbles: Ion composition, velocities of plasma motion and structure”, Radiophysics and Quantum Electronics, 32:11 (1989), 969–974 | DOI
[7] J. D. Huba, G. Joyce, J. Krall, “Three-dimensional modeling of equatorial spread F”, Aeronomy of the Earth's atmosphere and ionosphere, IAGA Special Sopron Book Series, 2, 2011, 211–218
[8] S. L. Ossakow, P. K. Chaturvedi, “Morphological studies of rising equatorial spread F bubbles”, J. Geophys. Res., 83 (1978), 2085–2090 | DOI
[9] W. B. Hanson, W. R. Coley, R. A. Heelis, A. L. Urquhart, “Fast equatorial bubbles”, J. Geophys. Res., 102 (1997), 2039–2045 | DOI
[10] DMSP 5D-2/F10, NASA Space Science Data Coordinated Archive, https://nssdc.gsfc.nasa.gov/nmc/spacecraft/displayTrajectory.action?id=1990-105A
[11] Yu.A. Sukovatov, “Numerical Modeling of Two-Dimensional Nonlinear Gradient-Drift Instability in the Outer Ionosphere”, Izv. Altaiskogo gos. univ., 2011, no. 1–2, 168–171
[12] Yu. A. Sukovatov, “The Theoretical Study on Nonlinear Gradient-Drift Instability in the Outer Ionosphere”, Izv. Altaiskogo gos. univ., 2012, no. 1-1, 222–225
[13] N. M. Kashchenko, S. A. Ishanov, S. V. Matsievsky, “Rayleigh-Taylor Instability Development in the Equatorial Ionosphere and a Geometry of an Initial Irregularity”, Mathematical Models and Computer Simulations, 11:3 (2019), 341–348 | DOI | MR | MR
[14] A. E. Hedin, J. E. Salah, J. V. Evans et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N2 density and temperature”, J. Geophys. Res., 82:A1 (1977), 2139–2147 | DOI
[15] A. E. Hedin, C. A. Reber, G. P. Newton et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition”, J. Geophys. Res., 82:A1 (1977), 2148–2156 | DOI
[16] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, V. S. Chevanin, “A version of essentially nonoscillatory high order accurate difference schemes for systems of conservation laws”, Mathematical Models and Computer Simulations, 2:3 (2010), 304–316 | DOI | MR | Zbl
[17] A.V. Safronov, “Accuracy estimation and comparative analysis of difference schemes of high-order approximation”, Numerical methods and program, 11:1 (2010), 137–143