A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles
Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 129-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ground and satellite measurements, as well as numerical modeling of the spatial structure of equatorial ionospheric bubbles, are carried out quite intensively. These data show that the longitude and altitude gradients of the electron density logarithm at the vertical boundaries of the bubbles can reach values of 0.001 1/m and 0.0001 1/m, respectively. With such electronic density concentration gradients, the gradient-drift instability can develop. This instability can generate ionospheric plasma irregularities with space-and-time scales are characteristic of equatorial F-spread. This article presents results of calculation of the gradient-drift instability growth rates at the ionospheric bubbles boundaries. The space-and-time structure of the equatorial plasma bubbles is obtained by numerical modeling. This simulation is based on a two-dimensional numerical model of the Rayleigh–Taylor instability in the Earth's equatorial ionosphere. This model is constructing on the condition that the Rayleigh–Taylor and gradient irregularities are strongly elongated along the magnetic field lines. The growth rates of the plasma gradient-drift instability are obtained from the dispersion equation. The results of numerical experiments confirm the possibility of generating the gradient-drift instability of ionospheric plasma. This is due to considerable longitude and altitude plasma gradients on the fronts of the developed equatorial plasma bubble. At the same time, the growth rate of the gradient-drift instability can reach values of 1/(170 s). The gradient-drift instability can be the cause of the equatorial F-spread.
Keywords: ionosphere, mathematical modeling, numerical modeling, equatorial plasma bubble, growth rate, Rayleigh–Taylor instability, gradient-drift instability, F-spread.
@article{MM_2020_32_11_a9,
     author = {N. M. Kashchenko and S. A. Ishanov and S. V. Matsievsky},
     title = {A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {32},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a9/}
}
TY  - JOUR
AU  - N. M. Kashchenko
AU  - S. A. Ishanov
AU  - S. V. Matsievsky
TI  - A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 129
EP  - 140
VL  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_11_a9/
LA  - ru
ID  - MM_2020_32_11_a9
ER  - 
%0 Journal Article
%A N. M. Kashchenko
%A S. A. Ishanov
%A S. V. Matsievsky
%T A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles
%J Matematičeskoe modelirovanie
%D 2020
%P 129-140
%V 32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_11_a9/
%G ru
%F MM_2020_32_11_a9
N. M. Kashchenko; S. A. Ishanov; S. V. Matsievsky. A numerical study of the gradient-drift instability growth rate at the fronts of the equatorial plasma bubbles. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 129-140. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a9/

[1] D. T. Farley, B. B. Balsley, R. F. Woodman, J. P. McClure, “Equatorial spread F: Implications of VHF radar observations”, J. Geophys. Res., 75 (1970), 7199–7216 | DOI

[2] B. W. Reinisch, M. Abdu, I. Batista et al., “Multistation digisonde observations of equatorial spread F in South America”, Ann. Geophys., 22 (2004), 3145 | DOI

[3] J. Rottger, “The macro-scale structure of equatorial spread-F irregularities”, J. Atm. Terr. Phys., 38 (1976), 97–101 | DOI

[4] S. Saito, T. Maruyama, M. Ishii et al, “Observations of small- to large-scale ionospheric irregularities associated with plasma bubbles with a transequatorial HF propagation experiment and spaced GPS receivers”, J. Geophys. Res., 113:A1 (2008), 2313

[5] R. F. Woodman, Spread F an old equatorial aeronomy problem finally resolved?, Ann. Geophys., 27 (2009), 1915–1934 | DOI

[6] S. V. Matsievskii, N. M. Kashchenko, M. A. Nikitin, “Ionospheric bubbles: Ion composition, velocities of plasma motion and structure”, Radiophysics and Quantum Electronics, 32:11 (1989), 969–974 | DOI

[7] J. D. Huba, G. Joyce, J. Krall, “Three-dimensional modeling of equatorial spread F”, Aeronomy of the Earth's atmosphere and ionosphere, IAGA Special Sopron Book Series, 2, 2011, 211–218

[8] S. L. Ossakow, P. K. Chaturvedi, “Morphological studies of rising equatorial spread F bubbles”, J. Geophys. Res., 83 (1978), 2085–2090 | DOI

[9] W. B. Hanson, W. R. Coley, R. A. Heelis, A. L. Urquhart, “Fast equatorial bubbles”, J. Geophys. Res., 102 (1997), 2039–2045 | DOI

[10] DMSP 5D-2/F10, NASA Space Science Data Coordinated Archive, https://nssdc.gsfc.nasa.gov/nmc/spacecraft/displayTrajectory.action?id=1990-105A

[11] Yu.A. Sukovatov, “Numerical Modeling of Two-Dimensional Nonlinear Gradient-Drift Instability in the Outer Ionosphere”, Izv. Altaiskogo gos. univ., 2011, no. 1–2, 168–171

[12] Yu. A. Sukovatov, “The Theoretical Study on Nonlinear Gradient-Drift Instability in the Outer Ionosphere”, Izv. Altaiskogo gos. univ., 2012, no. 1-1, 222–225

[13] N. M. Kashchenko, S. A. Ishanov, S. V. Matsievsky, “Rayleigh-Taylor Instability Development in the Equatorial Ionosphere and a Geometry of an Initial Irregularity”, Mathematical Models and Computer Simulations, 11:3 (2019), 341–348 | DOI | MR | MR

[14] A. E. Hedin, J. E. Salah, J. V. Evans et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N2 density and temperature”, J. Geophys. Res., 82:A1 (1977), 2139–2147 | DOI

[15] A. E. Hedin, C. A. Reber, G. P. Newton et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 2. Composition”, J. Geophys. Res., 82:A1 (1977), 2148–2156 | DOI

[16] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, V. S. Chevanin, “A version of essentially nonoscillatory high order accurate difference schemes for systems of conservation laws”, Mathematical Models and Computer Simulations, 2:3 (2010), 304–316 | DOI | MR | Zbl

[17] A.V. Safronov, “Accuracy estimation and comparative analysis of difference schemes of high-order approximation”, Numerical methods and program, 11:1 (2010), 137–143