Entropy stability of bicompact schemes in gas dynamics problems
Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 114-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fully discrete bicompact schemes of fourth order of approximation in space are examined for entropy stability in gas dynamics problems. Expressions for entropy production rates of these schemes are derived. Qualitative estimations for the behavior of these rates are obtained. Entropy production rates of bicompact schemes of first and third order in time are numerically analyzed in case of one-dimensional Riemann test problems. Based on the results of this analysis, it is concluded whether bicompact schemes need an entropy correction or not.
Keywords: gas dynamics, entropy stability, compact schemes, bicompact schemes.
@article{MM_2020_32_11_a8,
     author = {M. D. Bragin},
     title = {Entropy stability of bicompact schemes in gas dynamics problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {114--128},
     publisher = {mathdoc},
     volume = {32},
     number = {11},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a8/}
}
TY  - JOUR
AU  - M. D. Bragin
TI  - Entropy stability of bicompact schemes in gas dynamics problems
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 114
EP  - 128
VL  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_11_a8/
LA  - ru
ID  - MM_2020_32_11_a8
ER  - 
%0 Journal Article
%A M. D. Bragin
%T Entropy stability of bicompact schemes in gas dynamics problems
%J Matematičeskoe modelirovanie
%D 2020
%P 114-128
%V 32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_11_a8/
%G ru
%F MM_2020_32_11_a8
M. D. Bragin. Entropy stability of bicompact schemes in gas dynamics problems. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 114-128. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a8/

[1] L. I. Sedov, Mekhanika sploshnoi sredy, V 2 t., Lan, SPb., 2004, 528 pp.

[2] E. Tadmor, “Entropy Stable Schemes”, Handbook of Numerical Analysis, 17 (2016), 467–493 | MR

[3] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Applications to gas dynamics, Springer, 2009, 737 pp. | MR

[4] M. V. Abakumov, S. I. Mukhin, Yu. P. Popov, D. V. Rogozhkin, “Rarefaction shock waves in gas dynamics numerical solutions”, Math. Mod. Comp. Simul., 1:1 (2009), 21–30 | DOI | MR | Zbl

[5] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute preprints, 2019, 018, 25 pp.

[6] S. K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb. (N.S.), 47(89):3 (1959), 271–306 | Zbl

[7] S. K. Godunov, I. M. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee”, Comput. Math. Math. Phys., 54:6 (2014), 1012–1024

[8] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems”, Acta Numerica, 2003, 451–512 | DOI | MR | Zbl

[9] F. Ismail, P. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks”, J. Comput. Phys., 228 (2009), 5410–5436 | DOI | MR | Zbl

[10] P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier Stokes equations”, Commun. Comput. Phys., 14:5 (2013), 1252–1286 | DOI | MR | Zbl

[11] U. S. Fjordholm, S. Mishra, E. Tadmor, “Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws”, SIAM J. Numer. Anal., 50:2 (2011), 544–573 | DOI | MR

[12] T. C. Fisher, M. H. Carpenter, “High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains”, J. Comput. Phys., 252 (2013), 518–557 | DOI | MR | Zbl

[13] B. Biswas, R. K. Dubey, “Low dissipative entropy stable schemes using third order WENO and TVD reconstructions”, Adv. Comput. Math., 44:4 (2017), 1153–1181 | DOI | MR

[14] J. L. Guermond, R. Pasquetti, B. Popov, “Entropy viscosity method for nonlinear conservation laws”, J. Comput. Phys., 230:11 (2011), 4248–4267 | DOI | MR | Zbl

[15] T. Chen, C. W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws”, J. Comput. Phys., 345 (2017), 427–461 | DOI | MR | Zbl

[16] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 52:4 (2012), 578–600 | DOI | MR | Zbl

[17] A. V. Chikitkin, B. V. Rogov, S. V. Utyuzhnikov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Appl. Numer. Math., 93 (2015), 150–163 | DOI | MR | Zbl

[18] M. D. Bragin, B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations”, Comput. Math. Math. Phys., 56:6 (2016), 947–961 | DOI | MR | Zbl

[19] M. D. Bragin, B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations”, Appl. Numer. Math., 151 (2020), 229–245 | DOI | MR | Zbl

[20] M. D. Bragin, B. V. Rogov, “High order bicompact schemes for numerical mo-delling of multispecies multi reaction gas flows”, Math. Model. Comp. Simul., 13:4 (2021) | Zbl

[21] B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Appl. Numer. Math., 139 (2019), 136–155 | DOI | MR | Zbl

[22] R. Alexander, “Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl

[23] E. Tadmor, “The numerical viscosity of entropy stable schemes for systems of conservation laws. I”, Math. Comp., 49 (1987), 91–103 | DOI | MR | Zbl

[24] Yu. I. Shokin, N. N. Yanenko, Method of differential approximation. Applications to gas dynamics, Nauka, Novosibirsk, 1985, 363 pp.

[25] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comput., 25:3 (2003), 995–1017 | DOI | MR | Zbl