Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_11_a8, author = {M. D. Bragin}, title = {Entropy stability of bicompact schemes in gas dynamics problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {114--128}, publisher = {mathdoc}, volume = {32}, number = {11}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a8/} }
M. D. Bragin. Entropy stability of bicompact schemes in gas dynamics problems. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 114-128. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a8/
[1] L. I. Sedov, Mekhanika sploshnoi sredy, V 2 t., Lan, SPb., 2004, 528 pp.
[2] E. Tadmor, “Entropy Stable Schemes”, Handbook of Numerical Analysis, 17 (2016), 467–493 | MR
[3] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Applications to gas dynamics, Springer, 2009, 737 pp. | MR
[4] M. V. Abakumov, S. I. Mukhin, Yu. P. Popov, D. V. Rogozhkin, “Rarefaction shock waves in gas dynamics numerical solutions”, Math. Mod. Comp. Simul., 1:1 (2009), 21–30 | DOI | MR | Zbl
[5] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute preprints, 2019, 018, 25 pp.
[6] S. K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb. (N.S.), 47(89):3 (1959), 271–306 | Zbl
[7] S. K. Godunov, I. M. Kulikov, “Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee”, Comput. Math. Math. Phys., 54:6 (2014), 1012–1024
[8] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems”, Acta Numerica, 2003, 451–512 | DOI | MR | Zbl
[9] F. Ismail, P. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks”, J. Comput. Phys., 228 (2009), 5410–5436 | DOI | MR | Zbl
[10] P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier Stokes equations”, Commun. Comput. Phys., 14:5 (2013), 1252–1286 | DOI | MR | Zbl
[11] U. S. Fjordholm, S. Mishra, E. Tadmor, “Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws”, SIAM J. Numer. Anal., 50:2 (2011), 544–573 | DOI | MR
[12] T. C. Fisher, M. H. Carpenter, “High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains”, J. Comput. Phys., 252 (2013), 518–557 | DOI | MR | Zbl
[13] B. Biswas, R. K. Dubey, “Low dissipative entropy stable schemes using third order WENO and TVD reconstructions”, Adv. Comput. Math., 44:4 (2017), 1153–1181 | DOI | MR
[14] J. L. Guermond, R. Pasquetti, B. Popov, “Entropy viscosity method for nonlinear conservation laws”, J. Comput. Phys., 230:11 (2011), 4248–4267 | DOI | MR | Zbl
[15] T. Chen, C. W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws”, J. Comput. Phys., 345 (2017), 427–461 | DOI | MR | Zbl
[16] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Math. Math. Phys., 52:4 (2012), 578–600 | DOI | MR | Zbl
[17] A. V. Chikitkin, B. V. Rogov, S. V. Utyuzhnikov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Appl. Numer. Math., 93 (2015), 150–163 | DOI | MR | Zbl
[18] M. D. Bragin, B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations”, Comput. Math. Math. Phys., 56:6 (2016), 947–961 | DOI | MR | Zbl
[19] M. D. Bragin, B. V. Rogov, “Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations”, Appl. Numer. Math., 151 (2020), 229–245 | DOI | MR | Zbl
[20] M. D. Bragin, B. V. Rogov, “High order bicompact schemes for numerical mo-delling of multispecies multi reaction gas flows”, Math. Model. Comp. Simul., 13:4 (2021) | Zbl
[21] B. V. Rogov, “Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations”, Appl. Numer. Math., 139 (2019), 136–155 | DOI | MR | Zbl
[22] R. Alexander, “Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl
[23] E. Tadmor, “The numerical viscosity of entropy stable schemes for systems of conservation laws. I”, Math. Comp., 49 (1987), 91–103 | DOI | MR | Zbl
[24] Yu. I. Shokin, N. N. Yanenko, Method of differential approximation. Applications to gas dynamics, Nauka, Novosibirsk, 1985, 363 pp.
[25] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM J. Sci. Comput., 25:3 (2003), 995–1017 | DOI | MR | Zbl