Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_11_a6, author = {A. P. Duben and I. V. Abalakin and V. O. Tsvetkova}, title = {About solid walls boundary conditions for viscous flow problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {79--98}, publisher = {mathdoc}, volume = {32}, number = {11}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_11_a6/} }
TY - JOUR AU - A. P. Duben AU - I. V. Abalakin AU - V. O. Tsvetkova TI - About solid walls boundary conditions for viscous flow problems JO - Matematičeskoe modelirovanie PY - 2020 SP - 79 EP - 98 VL - 32 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_11_a6/ LA - ru ID - MM_2020_32_11_a6 ER -
A. P. Duben; I. V. Abalakin; V. O. Tsvetkova. About solid walls boundary conditions for viscous flow problems. Matematičeskoe modelirovanie, Tome 32 (2020) no. 11, pp. 79-98. http://geodesic.mathdoc.fr/item/MM_2020_32_11_a6/
[1] B. Mohammadi, G. Medic, A critical evaluation of the classical k/epsilon model and wall-laws for unsteady flows over bluff bodies, Technical report, INRIA, Rapport de recherche, No 3056, 1996 | MR
[2] F. Menter, J. Carregal Ferreira, T. Esch, B. Konno, “The SST turbulence model with im-proved wall treatment for heat transfer predictions in gas turbines”, Proc. of the International Gas Turbine Congress (2003, Tokyo), 2003, 1–7
[3] G. Kalitzin, G. Medic, G. Iaccarino, P. Durbin, “Near-wall behaviour of RANS turbulence models and implications for wall functions”, J. of Comp. Physics, 204 (2005), 265–291 | DOI | Zbl
[4] T. Knopp, “On grid-independence of RANS predictions for aerodynamic flows using model-consistent universal wall-functions”, Proc. of the European Conf. on Computational Fluid Dynamics, ECCOMAS CFD 2006, 2006
[5] T. Knopp, “Universal Wall Functions for Aerodynamic Flows: Turbulence Model Consistent Design, Potential and Limitations”, MEGADESIGN and MegaOpt German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design, 2010, 55–71
[6] K. N. Volkov, “Formulation of Wall Boundary Conditions in Turbulent Flow Computations on Unstructured Meshes”, Comp. Math. and Math. Phys., 54:2 (2014), 353–368 | DOI | MR | Zbl
[7] T. J. Craft, S. E. Gant, H. Iacovides, B. E. Launder, “A new wall function strategy for complex turbulent flows”, Numer. Heat Tran., 45 (2004), 301–318 | DOI
[8] L. Davidson, J. A. Backa, “Evaluation of numerical wall functions on the axisymmetric impinging jet using OpenFOAM”, Intern. J. of Heat and Fluid Flow, 67 (2017), 27–42 | DOI
[9] T. Knopp, F. Spallek, O. Frederich, G. Rapin, “Application of Numerical Wall Functions for Boundary Layer Flows with Separation and Reattachment”, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 132 (2016), 145–155 | DOI
[10] A. Jones, S. Utyuzhnikov, “Efficient computation of turbulent flow in ribbed passages using a non-overlapping near-wall domain decomposition method”, Comp. Physics Communications, 217 (2017), 1–10 | DOI
[11] P. Moin, J. Bodart, S. Bose, G. I. Park, “Wall-modeling in complex turbulent flows”, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2016, 207–219 | DOI
[12] P. R. Spalart, S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows”, 30th Aerospace Science Meeting (Reno, Nevada, 1992), AIAA Paper 92-0439
[13] B. Van Den Berg, “A Three-dimensional law of the wall for turbulent shear flows”, J. Fluid Mech., 70:1, 149–160 | MR | Zbl
[14] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale CFD and CAA simulations”, Vychisl. Metody Programm, 13:3 (2012), 110–125
[15] A. V. Gorobets, “Parallel algorithm of the NOISEtte code for CFD and CAA simulations”, Lobachevskii Journal of Mathematics, 39:4 (2018), 524–532 | DOI | MR | Zbl
[16] T. Knopp, “Improved Wall Functions Based on the 1D Boundary Layer Equations for Flows with Significant Pressure Gradient”, New Results in Numerical and Experimental Fluid Mechanics VII, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 112, eds. Dillmann A., Heller G., Klaas M., Kreplin HP., Nitsche W., Schröder W., Springer, Berlin–Heidelberg, 2010
[17] https://turbmodels.larc.nasa.gov/nasahump_val.html
[18] D. Greenblatt et al., “A Separation Control CFD Validation Test Case Part 2 Zero Efflux Oscillatory Blowing”, AIAA J., 2005, 1–24 | MR
[19] P. A. Bakhvalov, I. V. Abalakin, T. K. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Methods Fluids, 81:6 (2016), 331–356 | DOI | MR